针对破冰船冰致疲劳强度的问题,提出一种基于长时历计算的船冰碰撞模拟方法,通过船冰碰撞有限元模拟筛选出疲劳热点,运用雨流计数法对各个疲劳热点的应力时历曲线进行统计,得出应力循环下的均值和范围,进行平均应力修正,结合Miner线性累积损伤理论给出在设计寿命周期内的总损伤。结果表明:采用周期性介质分析方法计算到600s时破冰船应力时历统计特性已经稳定,且满足Weibull分布;船冰碰撞所造成的高应力结构多发生在船体外板区域,进行破冰船疲劳强度校核时应该多着重考虑船体结构与海冰发生碰撞的外板区域。
Aiming at the assessment of the ice induced fatigue strength of icebreaker, the ship ice collision simulation method based on the long time history calculation is proposed. Through the finite element simulation of ship ice collision, the fatigue hot spots are identified. The rain flow counting method is used to count the stress time history of each fatigue hot spot, and the mean stress and stress range under the stress cycles are obtained. The influence of the mean stress on the stress amplitude is considered. Combined with Miner linear cumulative damage model, the total damage is given in the design life cycle. This results show that the stress time history of the icebreaker is stable and obeys the Weibull distribution when it is simulated to 600s by using the periodic medium analysis method. The high stress structure caused by ship ice collision mostly occurs in the outer plate area of the ship. As checking the fatigue strength of icebreaker, more attention should be paid to the outer plate area where the ship structure collides with sea ice.
2021,43(12): 25-31 收稿日期:2021-07-05
DOI:10.3404/j.issn.1672-7649.2021.12.005
分类号:U661.4
基金项目:国家自然基金资助项目(51679050)
作者简介:刘文超(1976-),男,硕士研究生,主要从事环境戴荷与结构强度研究
参考文献:
[1] 张浩辉. 极地船舶结构疲劳分析方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[2] HWANG M R, LEE T K, KANG D H, et al. A study on ice-induced fatigue life estimation based on measured data of the ARAON[J]. Proceedings of the International Offshore and Polar Engineering Conference, 2016: 1262–1267
[3] LEE J H, HWANG M R, KWON S W. Analysis of local ice load signals measured on an arctic voyage in 2013[J]. Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC, 2015(1).
[4] HISASHI I, YONGSUK S, KIBOK J, et al. Fatigue damage estimation of hull structure of large Arctic LNG carrier due to ice loads[C]// International Conference and Exhibition on Performance of Ships and Structures in Ice 2010, ICETECH, 2010: 233-238.
[5] KIM J H, KIM Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields[J]. Marine Structures, 2019, 66(7): 83–105
[6] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2013.
[7] 冯国庆. 船舶结构疲劳强度评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
[8] 中国船级社. 极地船舶指南[S]. 北京: 人民交通出版社, 2016.
[9] 冯国庆, 刘文超, 赵伟栋, 等. DH36钢趾端焊接接头低温疲劳试验[J]. 船舶工程, 2020, 42(9): 93–98
[10] ZHAO W, FENG G, LIU W, et al. Research on fatigue properties of typical welded joints of DH36 steel at 60 ℃[J]. Applied Sciences, 2020, 10(11): 3742
[11] 胡毓仁, 陈伯真. 船舶及海洋工程结构疲劳可靠性分析[M]. 北京: 人民交通出版社, 1996.
[12] IACS. Requirements concerning Polar Class[S]. 2007.
[13] 徐飞翔. 北极海冰变化及其对春季下行长、短波辐射通量变化的响应[D]. 上海: 上海海洋大学, 2018.
[14] 董斌, 钱源, 李元泰, 等. 船体(平台)渤海冰区作业安全性分析[J]. 中国舰船研究, 2020, 15(1): 145–151+169