为了提升爆炸切割过程中防护装置的防护能力,从防护装置与待防护结构的接触着手,采用胶粘的方式来固定防护装置。利用Ansys/Ls-dyna软件对不同粘接强度的防护装置进行防护仿真,采用TIEBREAK关键字模拟防护装置与有机玻璃板的粘接过程,并设置不同的失效应力来模拟不同粘接剂的粘接情况。结果表明,提高关键字中的失效应力,使得冲击波超压峰值降低了35.2%。但当失效应力达到一定数值后,继续提高失效应力,防护效果提升不明显,冲击波超压峰值最多降低了39.4%。
In order to improve the protective ability of the protective device during the explosive cutting process, starting from the contact between the protective device and the structure to be protected, the protective device is fixed by glue. The Ansys/Ls-dyna software is used to simulate the protection of the protective devices with different bonding strengths. The TIEBREAK keyword is used to simulate the bonding process of the protective device and the plexiglass plate, and different failure stresses are set to simulate the adhesion of different adhesives. Then the situation. The results show that increasing the failure stress in the keyword reduces the peak shock wave overpressure by 35.2%. However, when the failure stress reaches a certain value, the failure stress is continued to increase, the protection effect is not improved significantly, and the peak shock wave overpressure is reduced by 39.4% at most.
2021,43(12): 44-49 收稿日期:2021-09-07
DOI:10.3404/j.issn.1672-7649.2021.12.008
分类号:TG49
基金项目:国家自然科学基金资助项目(11302106)
作者简介:杨志宏(1980-),男,本科,研究方向为战术导弹总体
参考文献:
[1] 朱正军. W型微爆索聚能射流计算及数值模拟[D]. 南京: 南京理工大学, 2012.
ZHU ZhengJun. Jet calculation and numerical simulationabout the W-type micro-detonation cord[D]. Nanjing: Nanjing University, 2012.
[2] 王新建. 爆破空气冲击波及其预防[J]. 中国人民公安大学学报(自然科学版), 2003, 9(4): 41-43.
WANG Xijian. Blasting air shock wave and its prevention[J]. Journal of Chinese People's PublicSecurity University (Natural Science Edition), 2003, 9(4): 41-43.
[3] MOURITZ A P. Advances in understanding the responseof fibre-based polymer composites to shock wavesandexplosive blasts[J]. Composites Part A:Applied Science and Manufacturing, 2019, 125: 105502
[4] 刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟[J]. 兵器装备工程学报, 2017, 38(9): 164–167
LIU jia, CUI Chuan-an, XU Chang. Simulation of explosive wave attenuation characteristics in rigid polyuretha ne foam[J]. Journal of Ordnance Equipment Engineer ing, 2017, 38(9): 164–167
[5] YONG Xia, QING Zhou, WANG P. C., et al. Development of a high-effi ciency modeling technique for weld-bonded stee l joints in vehicle structures, Part II: Dynam ic experiments and simulations[J]. Internationa l Journal of Adhesionand Adhesives, 2008, 29(4).
[6] 樊志远. 碳纤维增强复合材料层合板力学性能预测及分析[D]. 大连: 大连理工大学, 2018.
FAN Zhiyuan. Prediction and analysis of mechanical properties of carbon fiber reinforced composite laminates[D]. Dalian: Dalian University of Technology, 2018.
[7] 关焕文, 林贵平, 宋文娟, 等. 飞机救生爆炸切割冲击防护技术研究[J]. 火工品, 2015(5): 17–20
GUAN Huanwen, LIN Guipig SONG Wen-juan, et al. Shock prevention research for explosive cutting in aircraft escape system[J]. Initiating explosive devices, 2015(5): 17–20
[8] 吕进, 王伟力, 李永胜, 等. 基于环形切割器的串联战斗部隔爆材料的优选[J]. 弹箭与制导学报, 2014, 34(5): 105–109
LV Jin, WANG Weili, LI Yongsheng. Optimization of materials on explosion-proof body for tandem warhead with front annular cutter[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(5): 105–109
[9] 张鹏飞, 金海波. 基于低能量冲击损伤阻抗的复合材料薄壁结构铺层顺序设计[J]. 复合材料学报, 2014, 31(1): 18–25
ZHANG Pengfei, JIN Haibo. Stacking sequence design of composite thin-walled structure based on low energy impact damage resistance[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 18–25
[10] 范召, 章向明, 黄凌凯, 等. 复合材料补片加固钢板的粘接应力与失效模拟[J]. 应用力学学报, 2020, 37(3): 1125–1130
FAN zhao, ZHANG Xaingming, HAUNG Lingkai. The bonding stress and failure simulation of steel platereinforced with composite material patch[J]. ChineseJournalof Applied Mechanics, 2020, 37(3): 1125–1130
[11] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析[M]. 清华大学出版社, 2005.
SHI Dang-yong, LI Yu-Chun, ZHANG Sheng-min. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1[M]. Beijing: Tsinghua University Press, 2005.