为了掌握铝合金加筋板角接焊过程的温度响应和结构响应,基于顺序耦合法开展了5083铝合金加筋板角接焊的数值模拟,其中采用了双椭球热源模拟MIG焊的热输入,并通过生死单元法模拟焊料填充,较精确地模拟了铝合金MIG焊的焊接过程。数值结果较好地反映了铝合金角接焊时结构的温度变化特征,残余应力计算结果表明:焊缝处的最大焊接残余应力与材料屈服限相当;不同约束方式下的焊接残余应力分量的峰值差异很小,沿焊缝中心和板中线的残余应力分布也基本一致。
In order to obtain the temperature field and structural response of aluminum alloy fillet-joint during the welding process, the numerical simulation of fillet welding of 5083AL stiffened plates was carried out based on the sequential coupling method, in which the double ellipsoid heat source and the birth and death element method was adopted to simulate the MIG welding heat input and the solder filling respectively. The adopted numerical method would be useful to simulate the MIG welding process of aluminum alloy accurately. The numerical results reflect the temperature variation characteristics of aluminum alloy structure during fillet welding. The results of residual stresses show that the maximum welding residual stress at the weld is equivalent to the material yield limit, and the peak values of welding residual stress components under different restraint condition, have little difference and the distribution of residual stress along the weld center and plate center line are basically consistent.
2021,43(12): 71-75 收稿日期:2021-09-16
DOI:10.3404/j.issn.1672-7649.2021.12.013
分类号:U671.84
基金项目:黑龙江省自然科学基金资助项目(LH2020E078);国家自然科学基金资助项目(52171305)
作者简介:李陈峰(1981-),男,博士,副教授,主要从事船舶与海洋工程结构安全性研究
参考文献:
[1] HAZARI H R, BALUBAI M, KUMAR D S, et al. Experimental investigation of TIG welding on AA 6082 and AA 8011[J]. Materials Today:Proceedings, 2019, 19(2): 818–822
[2] MESEGUER-VALDENEBRO J L, MARTINEZ-CONESA E, PORTOLES A. Numerical-experimental validation of the welding thermal cycle carried out with the MIG welding process on a 6063-T5 aluminium tubular profile[J]. Thermal Science, 2019, 23(6A): 3639–3650
[3] ASADI P, ALIMOHAMMADI S, KOHANTORABI O, et al. Numerical investigation on the effect of welding speed and heat input on the residual stress of multi-pass TIG welded stainless steel pipe[J]. Journal of Engineering Manufacture, 2021, 235(6–7): 1007–1021
[4] Lu Y, Zhu S, Zhao Z, et al. Numerical simulation of residual stresses in aluminum alloy welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 380–393
[5] 张鹏飞, 卢嘉玮, 张兆年, 等. 6061-T6铝合金构件焊接残余应力分布[J]. 兰州交通大学学报, 2021, 40(30): 15–19
[6] 胡云瑞, 李鸣申, 王留芳, 等. 快速冷却对6005A铝合金多道次MIG焊接残余应力的影响[J/OL]. 热加工工艺, 2022(1): 103-106
[7] Li C, Ren H, Zhu Z, et al. Numerical investigation on the ultimate strength of aluminium integrally stiffened panels subjected to uniaxial compressive load[J]. Thin-Walled Structures, 2018, 127: 221–234
[8] Li C, Ren H, Zhu Z, et al. Influence of model extension and boundary conditions on the buckling behaviour of aluminium integrally stiffened panels under uniaxial compressive loading[J]. Ocean Engineering, 2020, 216: 108066
[9] Chen Z, Li C, Han X, et al. Sensitivity analysis of the MIG welding process parameters based on response surface method[J]. Journal of Adhesion Science and Technology, 2020, 10: 1–20
[10] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299–305
[11] Chen B Q, HASHEMZADEH M, SOARES C G. Numerical and experimental studies on temperature and distortion patterns in butt-welded plates[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(5–8): 1121–1131