钢质I型夹层结构作为一种潜在广泛应用于船舶工程的结构,其极限承载能力备受关注。本文研究压缩载荷下钢质I型夹层梁的极限承载能力,设计并开展缩比模型试验,掌握了钢质I型夹层梁结构的极限承载特性。同时,建立了分析压缩载荷下钢质I型夹层梁极限承载能力的有限元模型,通过与试验数据对比,验证了数值预报结果的有效性。利用数值模型,探讨了钢质I型夹层梁模型各部件厚度对其极限承载能力的影响规律。结果表明,改变下面板厚度对极限承载能力的影响最为敏感,芯层壁厚次之,而上面板厚度最为不敏感,相关研究结果对钢质I型夹层结构的工程应用具有一定的指导意义。
In this paper, a metallic I-core sandwich beam was designed and manufactured using laser welding technique. The elastic-plastic mechanical properties and ultimate bearing capacity of the metallic I-core sandwich beam were obtained by the ultimate bearing test under axial compression. The versatile explicit analysis code ANSYS was employed to establish the numerical model and analyze the mechanical properties of the metallic I-core sandwich beam under axial compression. Then, the results of the numerical simulation were compared with the experimental data. Finally, the influence of the thickness of the component on the ultimate bearing capacity of the metallic I-core sandwich beam was studied when the mass of the model was equally increased. The results showed that changing the thickness of the back panel was the most sensitive to the ultimate bearing capacity, followed by the core web thickness, and the upper panel thickness was the least sensitive. All the findings aim to guide the engineering application of the metallic I-core sandwich beam.
2021,43(12): 83-87 收稿日期:2021-03-22
DOI:10.3404/j.issn.1672-7649.2021.12.015
分类号:U663.6
作者简介:王海洋(1986-),男,硕士,高级工程师,研究方向为船舶与海洋工程结构设计
参考文献:
[1] 陈杨科, 何书韬, 刘均, 等. 金属夹层结构的舰船应用研究综述[J]. 中国舰船研究, 2013, 8(6): 6–13
[2] 张晓君, 杜志鹏, 谢永和. 夹层板在舰艇冲击防护中的研究进展[J]. 中国造船, 2011, 52(4): 270–281
[3] 张延昌, 王自力, 顾金兰, 等. 夹层板在舰船舷侧防护结构中的应用[J]. 中国造船, 2009, 50(4): 36–44
[4] ROLAND F, REINERT T. Laser welded sandwich panels for the shipbuilding industry[C]. In: Lightweight Construction-Latest Development. London, 2000: 1-12.
[5] 于耀, 王伟. 夹层板复杂弯曲极限强度性能研究[J]. 中国舰船研究, 2014, 9(3): 76–82
[6] 孔祥皓, 赫晓东. 带有典型缺陷的金属蜂窝夹层结构的共面力学性能研究[J]. 固体火箭技术, 2010, 33(6): 684–689
[7] 袁李斌. 开孔蜂窝夹层结构压缩承载性能分析[J]. 中国科技信息, 2018(12): 96–98
[8] 段沐枫, 肖军, 李勇, 沈裕峰. K-cor夹层结构的平压性能[J]. 复合材料学报, 2014, 31(5): 1284–1291
[9] 郑莹莹, 李宁, 尚伟, 等. K-cor增强泡沫夹层结构制备与力学性能[J]. 复合材料学报, 2012, 29(6): 230–236
[10] LEI Hongshuai, YAO Kai, WEN Weibin. Experimental and numerical investigation on the crushing behavior of sandwich composite under edgewise compression loading[J]. Composites Part B, 2016: 94
[11] WADDAR S, PITCHAIMANI J, DODDAMANI M. Buckling and vibration behavior of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads[J]. Composites Part B, 2019: 175
[12] HU Kaiming, LI Kaijie, GU Dongdong. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures[J]. Materials Science & Engineering A, 2019: 762
[13] 易雯, 赵耀, 高畅. 泡沫夹层复合材料的初始破坏载荷与极限载荷计算[J]. 中国造船, 2013, 54(2): 45–54