本文采用机械辅助的表面改性工艺,对氮化硼和碳化硼进行表面修饰,将其作为中子吸收填料制备微米和纳米BN(B4C)/环氧树脂复合材料,比较了不同粒径下材料在微观形貌、机械性能、耐热性能的差异,并利用MCNP程序对纳米材料的中子屏蔽性能进行模拟。结果表明:2种纳米级的复合材料较微米级微观形貌更加平整,其中BN含量为20%的复合材料冲击强度从28 kJ/m2提升至33 kJ/m2,拉伸强度从127 MPa提升至135 MPa,B4C含量为20%的复合材料冲击强度由24 kJ/m2提升至32 kJ/m2,拉伸强度从124 MPa提升至128 MPa,耐热性能也都有明显提升。模拟计算结果显示,2种环氧基复合材料对热中子有着良好的屏蔽性能,1 cm厚度的屏蔽板材对热中子屏蔽率接近100%。可作为一种良好的耐高温中子屏蔽材料。
In this paper, BN(B4C)/epoxy resin composites with micron and nano-BN(B4C)/epoxy resin were prepared by mechanical assisted surface modification process. The differences of micro structure, mechanical properties and heat resistance of materials with different particle sizes were compared, and the neutron shielding properties of nano materials were simulated by MCNP program. The results show that the two nano scale composites are smoother than the micron size composites. The impact strength of the composites with 20% BN content increased from 28 kJ/m2 to 33 kJ/m2, the tensile strength increased from 127 MPa to 135 MPa, the impact strength of the composites with 20% B4C content increased from 24 kJ/m2 to 32 kJ/m2, the tensile strength increased from 124 MPa to 128 MPa, and the heat resistance also improved significantly. The simulation results show that the two kinds of epoxy matrix composites have good thermal neutron shielding performance, and the shielding rate of 1 cm thick shielding plate is close to 100%. It can be used as a good high temperature neutron shielding material.
2021,43(12): 111-116 收稿日期:2020-08-31
DOI:10.3404/j.issn.1672-7649.2021.12.020
分类号:TL7
作者简介:陈志刚(1996-),男,硕士研究生,研究方向为舰船核环境工程
参考文献:
[1] 陈飞达, 汤晓斌, 王鹏, 等. 新型纤维增强环氧树脂基复合材料研制及其中子屏蔽性能研究[J]. 原子能科学技术, 2012, 46(增): 703
[2] 董宇, 戴耀东, 常树全, 等. WO3/CeO2/环氧树脂基辐射防护材料的制备及性能研究[J]. 材料导报, 2012, 26(S2): 184–186+205
[3] 魏强, 林杨波, 王毅, 等. 含硼钢对慢中子衰减性能的蒙特卡罗模拟[J]. 核技术, 2010, 33(5): 367
[4] 唐亮, 王秀峰, 等. 无机纳米粒子改性环氧树脂复合材料研究进展[J]. 化工新型材料, 2012, 40(4): 4–6
[5] 贾瑞虹, 张瑾轩, 张晓东, 等. 电催化过氧化氢还原的纳米材料作为潜在的辐射防护剂(英文)[J]. 电化学, 2019, 25(03): 340–348
[6] 王骁博, 艾娇艳. 无机纳米粒子改性环氧树脂研究进展[J]. 热固性树脂, 2012, 27(6): 70–72
[7] 吴荣俊, 徐晓辉, 戴伟, 等. 纳米屏蔽材料研究现状及新型屏蔽材料设计[J]. 舰船科学技术, 2019, 41(17): 52–56
[8] 盛博. 基于纳米功能元素协调分布的环氧树脂基辐射防护材料研究[D]. 南京: 南京航空航天大学, 2014
[9] 葛金龙, 王传虎, 等. 环氧树脂/蒙脱土纳米复合材料的制备及性能研究[J]. 中国非金属矿工业导刊, 2008, 4: 25–27
[10] 赵永锋. 稀土纳米氧化物及纳米稀土/橡胶复合材料的制备[D]. 北京: 北京化工大学, 2010.
[11] 吕继新, 陈建廷. 高效能屏蔽材料铅硼聚乙烯[J]. 核动力工程, 1994(4): 370–374
[12] 陈锦, 熊宁, 葛启录, 等. 热静压法制备大尺寸铝基碳化硼复合材料及性能研究[J]. 粉末冶金技术, 2020, 38(2): 132–137