为解决含内部结构的水下圆柱壳振动声辐射快速预报问题,提出一种解析-数值混合方法。将整个结构分为水下圆柱壳和内部结构两部分,采用轴对称边界元法得到圆柱壳表面声阻抗,结合Flügge壳体理论,建立水下圆柱壳的数理模型;采用有限元法建立内部结构的动力学模型。根据圆柱壳与内部结构接触点的位移协调和内力平衡条件,建立整个结构的动力学方程,求解方程得到壳体表面振动速度,再采用边界元法得到声场中任意一点的辐射声压。通过与数值软件计算结果对比,验证了本文方法的正确性。本文方法在改变内部结构进行多方案对比分析时具有显著的计算速度优势。
In present paper, a hybrid analytical-numerical approach is adopted to investigate vibration and acoustic radiation characteristics of a submerged cylindrical shell coupled with interior structures. The entire structure is divided into a fluid-loaded cylindrical shell and interior structures. Flügge shell equations and Helmholtz equation in the cylindrical coordinate system are adopted to describe the shell and surrounding fluid, respectively. Interior structures are modelled through finite element method (FEM). By utilizing the continuity conditions between the shell and internal structures, the final governing equations are established. Once vibration responses of the structure are determined, acoustic radiation from the cylindrical shell can be computed through the boundary element method (BEM). The validity of present method is demonstrated by comparing the results with those obtained from the coupled finite element/boundary element method. Present method is highly efficient and has significant advantages in the comparative analysis of multiple schemes.
2021,43(12): 122-127 收稿日期:2021-04-27
DOI:10.3404/j.issn.1672-7649.2021.12.022
分类号:TB123
作者简介:张磊(1994-),男,硕士,工程师,研究方向为减振降噪
参考文献:
[1] WANG C, LAI JCS. Prediction of natural frequencies of finite length circular cylindrical shells[J]. Applied Acoustics, 2000, 59(4): 385–400
[2] PAN Z, LI XB, MA JJ. A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions[J]. Journal of Sound and Vibration, 2008, 341(1–2): 330–342
[3] WANG ZH, XING JT, PRICE WG. A study of power flow in a coupled plate-cylindrical shell system[J]. Journal of Sound and Vibration, 2004, 271(3): 863–882
[4] CHENG L, NICOLAS J. Free vibration analysis of a cylindrical shell—circular plate system with general coupling and various boundary conditions[J]. Journal of Sound and Vibration, 1992, 155(2): 231–247
[5] PAN Z, LI X, MA J. A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions[J]. Journal of Sound and Vibration, 2008, 314(1–2): 330–342
[6] 庞福振, 吴闯, 王献忠, 等. 水下加筋圆柱壳声辐射特性分析的改进精细传递矩阵法[J]. 振动与冲击, 2017, 36(22): 131–137
PANG Z, WU C, WANG X, et al. An improved precise transfer matrix method for the analysis of acoustic radiation of ring-stiffened cylindrical shells[J]. Journal of Vibration and Shock, 2017, 36(22): 131–137
[7] 肖邵予. 两端用圆板封口的环肋柱壳振动声辐射性能分析[D]. 武汉: 华中科技大学, 2004.
XIAO S. Vibroacoustic analysis of a finite stiffened-cylindrical shell closed by circular plates[D]. Wuhan: Huazhong University of Science and Technology, 2004.
[8] 陈美霞, 谢坤, 魏建辉. 多舱段圆柱壳振动特性研究[J]. 振动工程学报, 2014, 27(4): 555–564
CHEN M, XIE K, WEI J. Vibration characteristics of multiple cabins of cylindrical shell[J]. Journal of Vibration Engineering, 2014, 27(4): 555–564
[9] WEI J, CHEN M, HOU G, et al. Wave based method for free vibration analysis of cylindrical shells with nonuniform stiffener distribution[J]. Journal of Vibration and Acoustics, 2013, 135(6): 061011
[10] MAXIT L, GINOUX J M. Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames[J]. The Journal of the Acoustical Society of America, 2010, 128(1): 137–151
[11] SOENARKO B. A boundary element formulation for radiation of acoustic waves from axisymmetric bodies with arbitrary boundary conditions[J]. Journal of the Acoustical Society of America, 1993, 93(2): 631–639
[12] WANG W, ATALLA N, NICOLAS J. A boundary integral approach for acoustic radiation of axisymmetric bodies with arbitrary boundary conditions valid for all wave numbers[J]. The Journal of the Acoustical Society of America, 1997, 101(3): 1468–1478
[13] LEISSA A W. Vibration of shells[M]. New York: Acoustical Society of America, 1993.