水下航行器系统是包含主体、推进系统和其余附体的整体结构,其航行特性研究是水下航行器系统设计的重要内容。为研究水下航行器系统的航行性能和航行时的表面压力特征和流场特性,基于CFD方法,使用重叠网格和滑移网格相结合的混合网格技术对某自主研发水下航行器系统模型进行直接模拟。结果表明:水下航行器系统在不同大小的推力作用下,会表现出不同的航行性能,通过推力-速度曲线可以插值得到不同推力下的航行点;水下航行器在来流速度不同时其所受表面压力大小不同,但分布规律相似,且具有相同的流场分布特性。
The underwater vehicle system is an integral structure including the main body of the underwater vehicle, the propulsion system and the other appendage. In order to research the navigation performance of the underwater vehicle system, the surface pressure characteristics and flow field characteristics when the underwater vehicle system is navigating, based on the CFD method, a hybrid mesh technology combining overlapping mesh and sliding mesh is used to directly simulate a self-developed model of the underwater vehicle system. The results show that the underwater vehicle system has different navigation performance when propulsion system provides different thrusts and the maximum navigation speed under different thrust can be obtained from the thrust-velocity curve. The surface pressure distribution of surface pressure is similar. The water submersible has the same flow field distribution characteristics when underwater vehicle system has different velocity.
2021,43(12): 128-135 收稿日期:2020-11-13
DOI:10.3404/j.issn.1672-7649.2021.12.023
分类号:O357.1
基金项目:国家自然科学基金资助项目(51979110)
作者简介:吴家鸣(1957-),男,博士,教授,研究方向为船舶与海洋工程水动力学
参考文献:
[1] 沈兴荣, 冯学梅, 蔡荣泉. 大型集装箱船桨舵干扰黏性流场的数值计算研究[J]. 船舶力学, 2009, 13(4): 540–550
[2] 杨琴, 王国栋, 张志国, 等. 基于CFD的潜艇模型航行仿真分析[J]. 中国舰船研究, 2013, 8(4): 22–27
[3] 吴召华, 陈作钢, 代燚. 基于体积力法的船体航行性能数值预报[J]. 上海交通大学学报, 2013, 47(60): 943–949
[4] PHILLIPS A B, TUMOCK S R, FURLONG M. Evaluation of manocuvring coefficients of a self-propelled ship using a blade element momentum propeller model coupled to a Reynolds averaged Navier Stokes flow solver[J]. Ocean Engineering, 2009, 36(15–16): 1217–1225
[5] 傅慧萍. 一种基于体积力螺旋桨模型的航行计算方法[J]. 船舶力学, 2015, 19(7): 791–796
[6] VERSTEEG M. An introduction to computational fluid dynamics: the finite volume method[M]. Wiley, New York, 1995.
[7] MENTER, F. R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, vol. 32, no 8 pp. 1598-1605.
[8] STEGER J L, DOUGHERTY F C, BENEK J A. A chimera grid scheme[C]//Mini Symposium on Advances in Grid Generation, 1982.
[9] PEACE DG, ATANLEY S, MARTIN F, et al. Development of a large Chimera grid system for space shuttle. AIAA 930533, 1993.
[10] 沈海龙, 苏玉民. 基于滑移网格技术的船桨相互干扰研究[J]. 哈尔滨工程大学学报, 2010, 31(1): 1–7
[11] STEPHEN C. S, DANIEL M. E, et al. Design and characterization of a small-scale azimuthing thruster for a mobile offshore base module[J]. Marine Structures. 2001, 14: 215-229.
[12] 李鹏, 高振勋, 蒋崇文. 重叠网格方法的研究进展[J]. 力学与实践, 2014, 36(5): 551–565