由于船舶机舱空间狭小,因此布置用于二冲程柴油机的SCR反应器和其管道较为困难。利用CFD模拟了在100%负荷下SCR反应器之前的尿素雾滴和排气的混合过程。模拟结果表明,当6S35ME-B9 SCR系统的旋转角和护盖展开角分别为15°和75°时,尿素与排气在较短的距离内能够形成良好的混合,并且整个系统压降小于1.4 kPa。对安装有SCR系统的6S35ME-B9柴油机进行了100 h的测试,结果表明NOx排放从18.15 g/kWh降低到3.17 g/kWh。针对6S35ME-B9柴油机的SCR系统的设计和试验可以为实船上的SCR系统提供理论和应用基础。
Due to the narrow space of ship engine room,the arrangement of the two stroke diesel engine SCR (Urea-SCR, Urea, Selective, Catalytic, Reduction) reactor and its pipe is difficult. CFD was used to simulate the mixing process of urea droplets and smoke exhaust in the front straight mixing section of a SCR reactor under 100% load. Finally, when the rotation angle and shroud expansion angle of 6S35ME-B9 SCR system were 15 degrees and 75 degrees, reducer forms a well mixing with the exhaust gas in a short distance and the whole system pressure drop is less than 1400Pa. Through the full scale SCR system, the 6S35ME-B9 engine is tested for 100 hours, and NOx emissions were reduced from 18.15 g/kWh to 3.17 g/kWh. The design of the full scale SCR system of 6S35ME-B9 marine diesel engine and bench test, it provides the theory and application foundation for the real ship SCR system.
2021,43(12): 136-139 收稿日期:2020-07-20
DOI:10.3404/j.issn.1672-7649.2021.12.024
分类号:TK421+.5
基金项目:国家自然科学基金资助项目(51309149)
作者简介:林建辉(1974-),男,高级工程师,研究方向为机电
参考文献:
[1] 蔡永祥. 国IV柴油机OBD系统及其监控单元电磁兼容性设计[D]. 武汉: 武汉理工大学. 2010.
[2] BALK J H, YIM S D, NAM I S, et a1. Control of NOX emissions from diesel engine by selective catalytic reduction (SCR) with urea[J]. Topics in Catalysis, 2004, 30/31: 37–41
[3] 朱元清, 周松, 王金玉, 等. 船舶柴油机Urea-SCR系统工作过程计算研究[J]. 中南大学学报:自然科学版, 2013, 44(5): 2093–2100
[4] ZHENG Guanyu, PALMER G, SALANTA G, et al. Mixer development for urea SCR applications. SAE Technical Paper 2009-01-2879[R]. New York: SAE, 2009.
[5] RAJADURAI S. Improved NOX reduction using wire mesh thermolysis mixer in urea SCR system. SAE Technical Paper 2008-01-2636[R]. New York: SAE, 2008.
[6] ZHANG Xiaogang, ROMZEK M, MORGAN C. 3-Dnumerical study of mixing characteristics of NH3 in front of SCR. SAE Technical Paper 2006-01-3444[R]. New York: SAE, 2006.
[7] 陈悦, 吕林. 船用柴油机SCR系统混合器仿真与试验研究[J]. 哈尔滨工程大学学报, 2016, 37(1): 24–29
[8] BIRKHOLD F, MEINGAST U, WASSERMANN P, et al. Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOrsystems[J]. Applied Catalysis B:Environmental, 2007, 70: 119–127
[9] STROM H, LUNDSTROM A, ANDERSSON B. Choice of urea-spray models in CFD simulations of urea-SCR systems[J]Chemical Engineering Journal, 2009, 1 50: 69-82.
[10] 张文娟, 帅石金, 黄红义, 等. 尿素SCR-Nox催化器流动、还原剂喷雾及表面化学反应三维数值模拟[J]. 内燃机学报, 2007, 25(5): 433–438
[11] ZHAN R, LI Wei, EAKLE S T, et al. Development of a novel device to improve urea evaporation, mixing and distribution to enhance SCR performance. SAE Technical Paper 2010-01-1185[R]. New York: SAE, 2010.
[12] MADIA G S. Measures to enhance the Nq conversion in Urea-SCR systems for automotive applications[D]. Zurich, Switzerland: Swiss Federal Institute of Technology, 2002: 137-154.
[13] AVL List GmbH. FIRE v2008-Aftertreatment manual[M]. Graz, Austria: AVL List GmbH, 2008: 63-79.
[14] 朱天宇, 李德波, 方庆艳, 等. 燃煤锅炉SCR烟气脱硝系统流场优化的数值模拟[J], 动力工程学报, 2015, 35(6): 481-488.