为满足舰载雷达的关键部件TR组件抗冲击和轻量化设计要求,采用DDAM和时域模拟法分别对TR组件进行冲击计算分析。由计算结果可知,2种冲击计算方法得到的应力分布区域和危险区域基本一致,3个冲击方向上最大应力均位于其后侧导向销上,且应力值均小于相应材料的屈服强度,垂向冲击应力最大,时域模拟法计算应力值小于DDAM,但计算时间明显高于DDAM。此外,通过分析TR组件冲击应力分布情况,提出了结构优化改进建议。对于TR组件这种位于舰船桅杆区重量控制严格的舰载设备,建议采用计算精度高且计算结果完善合理的时域模拟法代替DDAM进行冲击计算分析。研究结果可为舰载设备抗冲击轻量化设计提供理论支撑。
In order to meet the anti-shock and lightweight design requirements of TR module in shipborne radar, DDAM and time domain simulation method were used to compute and analyze the shock response of TR module. It can be seen from the computation results that stress distribution area and danger area obtained by two shock computation methods were the same. The maximum stress in three directions was located on the guide pin, the stress was less than the yield strength of the corresponding material, and the vertical shock stress was the largest. The stress computed by time domain simulation method was less than that of DDAM, but the computation time was obviously higher than that of DDAM. Furthermore, the structural optimization improvement suggestions were put forward by analyzing the shock stress distribution of TR module. It is suggested that time domain simulation method with high computation accuracy and reasonable computation results should be used instead of DDAM for shock analysis of TR module, which is shipborne equipment with strict weight control located in the ship mast area. The research results can provide theoretical support for the anti-shock and lightweight design of shipborne equipment.
2021,43(12): 155-160 收稿日期:2021-05-12
DOI:10.3404/j.issn.1672-7649.2021.12.028
分类号:U661.4
作者简介:朱曾辉(1990-),男,硕士,工程师,主要从事机电装备总体设计工作
参考文献:
[1] 徐俊东, 周世新. 基于DDAM的舰载雷达阵面抗冲击分析[J]. 电子机械工程, 2012, 28(5): 18–21
XU Jun-dong, ZHOU Shi-xin. Shock-resistant capability analysis of a shipborne array antenna based on DDAM[J]. Electro-Mechanical Engineering, 2012, 28(5): 18–21
[2] XIE Zui-wei, HE Shao-hua, WU Xin-yue. Anti-shock optimization of a certain gas turbine foundation by DDAM[J]. Advanced Materials Research, 2010, 129-131: 376–380
[3] 计晨, 汪玉, 杨莉, 等. 水下爆炸载荷作用下舰用齿轮箱强度极限数值仿真研究[J]. 北京理工大学学报, 2011, 31(1): 8–11
JI Chen, WANG Yu, YANG Li, et al. Numerical simulation study on intensity threshold of marine gearbox subjected to underwater explosion load[J]. Transactions of Beijing Institute of technology, 2011, 31(1): 8–11
[4] 李晓明, 陈凤. 舰船浮筏隔振装置DDAM抗冲击计算[J]. 噪声与振动控制, 2012(6): 34–39
LI Xiao-ming, CHEN Feng. Shock Response computation of vibration-isolating system of marine floating raft using DDAM[J]. Noise and Vibration Control, 2012(6): 34–39
[5] 浦军, 石邦凯. 基于DDAM的某舰用升降装置抗冲击分析[J]. 舰船科学技术, 2017, 39(8): 128–132
PU Jun, SHI Bang-kai. Shock resistance analysis on certain ship lift based on DDAM[J]. Ship Science and Technology, 2017, 39(8): 128–132
[6] JIANG X, ZHANG Z O, SHEN W W. Researches on the anti-shock capability of a ship-borne cabinet based on DDAM, IET[C]//Asia International Symposium on Mechatronics, 2016.
[7] 赵应龙, 何琳, 吕志强. 应用DDAM进行船舶浮筏隔振装置抗冲击计算[J]. 工程力学, 2007, 24(4): 159–167
ZHAO Ying-long, HE Lin, LV Zhi-qiang. The application on DDAM on the computation on shock response of marine floating raft vibration-isolating system[J]. Engineering Mechanics, 2007, 24(4): 159–167
[8] 郭君, 孙占忠, 黄式璋, 等. 舰艇气瓶基座结构抗冲击性能评估方法[J]. 中国舰船研究, 2018, 13(3): 90–96
GUO Jun, SUN Zhan-zhong, HUANG Shi-zhang, et al. Shock resistance evaluation method of ship air bottle-base connection structure[J]. Chinese Journal of Ship Research, 2018, 13(3): 90–96
[9] 程方训, 孙海军, 刘磊. 海上浮动核电站压力容器DDAM抗冲击计算[J]. 舰船科学技术, 2019, 41(3): 108–111
CHEN Fang-xun, SUN Hai-jun, LIU Lei. Shock response computation of floating nuclear power plant pressure vessel using DDAM[J]. Ship Science and Technology, 2019, 41(3): 108–111
[10] 韩江桂, 吴新跃, 贺少华. 船舶推进轴系冲击响应计算方法[J]. 舰船科学技术, 2012, 34(1): 45–49
HAN Jiang-gui, WU Xin-yue, HE Shao-hua. Research on shock response method of ship propulsive shafting[J]. Ship Science and Technology, 2012, 34(1): 45–49
[11] 刘海超, 闫明, 冯麟涵. 带限位隔振系统的冲击响应分析[J]. 振动与冲击, 2019, 38(21): 172–177
LIU Hai-chao, YAN Ming, FENG Lin-han. Shock response of a vibration isolation system with displacement restrictors[J]. Journal of Vibration and Shock, 2019, 38(21): 172–177