为研究深水码头复杂水流条件下系泊船的水动力特性,利用CFD软件STAR-CCM+对系泊船模型的粘性流场进行瞬态数值模拟,通过求解 RANS方程和Realizable k-ε湍流模型获得船舶水流作用力。在无波浪定常流作用下,系泊船姿态最终保持稳定,可用固定船舶近似代替系泊船进行模型简化。在完成网格无关性和数值模型合理性研究的基础上,对不同流速、不同流向角度以及流向沿水深变化的复杂水流条件下船舶的水动力进行预报,探讨不同水流条件下系泊船纵向力、横向力、首摇力矩的变化规律,研究成果可为复杂水流环境下系泊船的布缆及相关工程设计提供参考。
In order to study the hydrodynamic characteristics of moored ship under complex flow conditions of deep-water wharf, the transient numerical simulation of viscous flow field of moored ship model was carried out with STAR-CCM +. The flow force was obtained by solving RANS equation and realizable k - ε turbulence model. Under the action of steady flow without wave, the attitude of the moored ship remains stable at last, so the model can be simplified by using the fixed ship instead of the moored ship. Based on the research of grid independence and rationality of numerical model, the hydrodynamic forces of ships under different flow velocity, different flow direction angle and the flow direction changing along the water depth are predicted, and the change rules of longitudinal force, transverse force and yaw moment of moored ships under different flow conditions are discussed. The research results can provide a reference for the mooring ship's cable layout and related engineering design in complex flow environment.
2022,44(1): 1-6 收稿日期:2021-01-18
DOI:10.3404/j.issn.1672-7649.2022.01.001
分类号:U661.1
基金项目:浙江省交通运输厅科研计划项目(2019011)
作者简介:刘洪杰(1975-),男,教授级高级工程师,研究方向为港口航道与海岸工程
参考文献:
[1] ZHANG F, ZHAO J, ZHANG X q. Test study on current force on mooring ships[J]. China Ocean Engineering, 1993(2): 225–242
[2] 张怀新, 刘应中, 缪国平. 船体各种剖面的横摇阻尼与旋涡的形状[J]. 水动力学研究与进展, 2001(3): 382–389
ZHANG Huai-xin, LIU Ying-zhong, MIU Guo-ping. Vortex patterns and roll damping at various cross sections of ship[J]. Journal of Hydrodynamics, 2001(3): 382–389
[3] 邹志利, 张日向, 张宁川, 等. 风浪流作用下系泊船系缆力和碰撞力的数值模拟[J]. 中国海洋平台, 2002, 17(2): 22–27
ZOU Zhi-li, ZHANG Ri-xiang, ZHANG Ning-chuan, et al. The numerical simulation of mooring force & impact force of ship moored to offshore platform[J]. China Offshore Platform, 2002, 17(2): 22–27
[4] XIANG Y, TAN J H. Analysis of mooring lines forces of a berthed ship [J]. Journal of Ship Mechanics, 2002.
[5] VARYANI K S. Force on the mooring lines of a ship due to the hydrodynamic interaction effects of a passing ship[J]. International Shipbuilding Progress, 2004: 51
[6] 胡毅, 胡紫剑, 刘元丹, 等. 基于AQWA的大型LNG船码头系泊分析[J]. 舰船科学技术, 2012, 34(2): 70–73+110
HU Yi, HU Zi-jian, LIU Yuan-dan, et al. Analysis of the large LNG ships moored against a quay based on AQWA[J]. Ship Science and Technology, 2012, 34(2): 70–73+110
[7] 嵇春艳, 郭建廷, 崔杰, 等. 船舶码头系泊的耦合动力响应分析[J]. 舰船科学技术, 2016, 38(19): 46–51
JI Chun-yan, GUO Jian-ting, CUI Jie, et al. Analysis of coupling dynamic response of ship mooring at the dock[J]. Ship Science and Technology, 2016, 38(19): 46–51
[8] 李焱, 陈汉宝, 高峰, 等. 复杂水流作用下船舶系泊条件试验分析[J]. 港口科技, 2019(2): 24–28
LI Yan, CHEN Han-bao, GAO Feng, et al. Experimental analysis of ship mooring conditions under complex flow[J]. Science and Technology of Ports, 2019(2): 24–28
[9] Proceedings, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics[C]. Tokyo, 2015.
[10] ITTC. ITTC-Recommended Procedures and Guidelines: Practical Guidelines for Ship CFD Application [S]. 2011.
[11] ITTC, 1957. Report of resistance committee. In: Presented at the Proceedings of 8 th ITTC[C]. Madrid, 1957.
[12] SCHOENHERR, K. E. , Resistance of flat surfaces moving through a fluid [J]. Transactions-The Society of Naval Architects and Marine Engineers. 1932, 40: 279–313.