当船舱内部分别载有水和冰时,每个水质点具有不同的加速度,而所有冰质点具有相同的加速度,这将导致相同质量水舱和冰舱具有完全不同的运动特性。基于开源软件OpenFOAM模拟二维液舱和冰舱在波浪中的运动过程,通过将载水舱与含有等质量冰的载冰舱的计算结果进行比较,研究液舱内水运动对于液舱运动特性的影响。建立以N-S方程和连续性方程为控制方程的计算模型,采用有限体积法(FVM)离散控制方程,采用流体体积法(VOF)捕捉自由液面,采用动网格技术处理物体运动所导致的网格变形。研究舱内水或冰,外部波浪与液舱的相互作用,分析三者之间的耦合作用机理。研究发现,相同质量的水和冰发生状态转化以后固有频率发生了显著的变化,因此船舱固有频率和波浪频率的相对关系发生变化,进而影响载水舱和载冰舱的运动幅值。
When the tank is filled with liquid and ice respectively, each particle of fluid has a different acceleration, but they are all the same for the ice, which will lead to the motion characteristics of inner liquid is quite different from that of the ice. In this paper, the process of two-dimensional liquid tank and ice tank pitching in waves will be simulated based on the open source software OpenFOAM. The comparison between air and water is made, to investigate the influence of inner liquid on the motion of the tank. The numerical model is established based on the N-S equation and the continuity equation, the finite volume method (FVM) is used to discretize the control equations, the fluid volume method (VOF) to capture the free surface, and the dynamic mesh technology to deal with the mesh deformation caused by the moving of body. The mutual dependence between inner liquid or ice, waves and the tank are investigated. It is found that the natural frequencies of water and ice are much different, their differences from wave frequency also get changed, which will further affect the motion amplitude of water tank and ice tank.
2022,44(1): 12-16 收稿日期:2020-07-08
DOI:10.3404/j.issn.1672-7649.2022.01.003
分类号:U661
基金项目:国家自然科学基金资助项目(51809123),江苏省自然科学基金资助项目(SBK2018040999)
作者简介:王梦 (1996-) ,男,硕士研究生,研究方向为船舶与海洋结构物水动力特性
参考文献:
[1] ABRAMSON H. The dynamic behavior of liquids in moving containers. NASA SP-106[J]. NASA Special Publication, 1966: 106
[2] O. M. Faltinsen. Sloshing[J]. 力学进展, 2017: 1−24.
[3] 黄硕, 段文洋. 液舱晃荡与船体非线性时域耦合运动计算[J]. 哈尔滨工程大学学报, 2014(9): 1045–1052
HUANG S, DUAN W Y. Nonlinear time domain simulation of sloshing and coupled ship motion[J]. Journal of Harbin Engineering University, 2014(9): 1045–1052
[4] SUN. S. Y, WU. G. X, XU.G. Free fall water entry of a wedge tank into calm water in three degrees of freedom[J]. Applied Ocean Research, 2019, 92: 101920
[5] 张书谊, 段文洋. 矩形液舱横荡流体载荷的Fluent数值模拟[J]. 中国舰船研究, 2011, 6(5): 73-77.
ZHANG S. Y, DUAN W. Y. Numerical Simulation of Sloshing Loads on Rectangular Tank Based on Fluent. [J]. Chinese Journal of Ship Research, 2011, 6(5): 73-77.
[6] KIM Y. Numerical simulation of sloshing flows with impact load[J]. Applied Ocean Research, 2001, 23(1): 53–62
[7] 朱仁庆, 侯玲. LNG船液舱晃荡数值模拟[J]. 江苏科技大学学报(自然科学版), 2010, 24(1): 1–6
[8] 王庆丰, 焦经纬, 徐刚, 等. FSRU晃荡的耦合分析[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 684–688
WANG Q F, JIAO J W, XU G, et al. Analysis of coupling effects of sloshing and ship motion for FSRU[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2017, 31(5): 684–688
[9] 甄长文, 吴文锋, 朱柯壁, 等. 共振频率下油船液舱晃荡数值模拟研究[J]. 中国修船, 2019, 32(1): 40–43
[10] 李裕龙, 朱仁传, 缪国平, 等. 基于OpenFOAM的船舶与液舱流体晃荡在波浪中时域耦合运动的数值模拟[J]. 船舶力学, 2012, 16(7): 750–758
LI Y L, ZHU R C, MIAO G P, et al. Simulation of ship motion coupled with tank sloshing in time domain based on OpenFOAM[J]. Journal of Mechanics, 2012, 16(7): 750–758
[11] CLEARY J,WILLIAM A. Subdivision, stability, liability[J]. Safety, 1981, 19(3): 228–244
[12] BASS R L, E BOWLES B, COX P A. Liquid dynamic loads in LNG cargo tanks[J]. Sname Transactions, 1980, 88: 103–126
[13] IGLESIAS. A. S, BULIAN. G,VERA. E. B. A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering, 2015, 105(SEP.1): 136–159
[14] ZOU C F, WANG D Y, et al. The effect of liquid viscosity on sloshing characteristics[J]. Journal of Marine Science and Technology, 2015, 20(4): 765–775
[15] LEE. D. H, KIM. M. H,KWON. S. H, et al. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations[J]. Ocean Engineering, 2007, 34(1): 3–9