与传统层合复合材料结构相比,夹芯复合材料结构轻质、高强,结构可设计性强,可实现多材料和多功能的一体化集成。本文基于螺旋桨结构水动力边界条件,以INSEAN E779A螺旋桨为研究对象,采用双向流固耦合仿真方法研究夹芯结构螺旋桨的水动力性能和结构响应特性,并与金属材料螺旋桨、传统层合结构螺旋桨进行对比,分析不同夹芯构型与螺旋桨水动力性能的关联性。结果表明:在中高进速系数条件下,螺旋桨结构形式对推进效率的影响较大,夹芯复合材料螺旋桨在实现轻量化的同时,其推进效率要优于同工况下的层合复合材料螺旋桨与金属螺旋桨;在中低进速系数条件下,夹芯复合材料螺旋桨的水动力性能与夹芯构型有着重要联系,随着夹芯体积比的减小,整体质量变大但推进效率得到一定提升。
Compared with the traditional laminated composite material structure, the sandwich composite material structure is light-weight, high-strength, and the structure can be designed, which can realize the integration of multi-material and multi-function. Based on the hydrodynamic boundary conditions of propeller structure, this paper takes INSEAN E779A propeller as the research object, adopts the two-way fluid structure coupling simulation method to study the hydrodynamic performance and structural response characteristics of sandwich structure propellers and compares with metal material and traditional laminated structure propellers, then analyzes the correlation between different sandwich structure and propeller hydrodynamic performance. The results show that the structure of the propeller has a great influence on the propulsive efficiency under the condition of medium and high advance coefficients, and the propulsion efficiency of the sandwich composite propeller is better than that of the laminated composite propeller and the metal propeller under the same working condition while realizing the lightweight. Under the condition of low and medium advance coefficient, the hydrodynamic performance of the composite propeller has an important relationship with the configuration of the sandwich propeller. With the decrease of the volume ratio of the sandwich propeller, the overall mass increases but the propulsion efficiency improves to a certain extent.
2022,44(1): 27-33 收稿日期:2021-04-12
DOI:10.3404/j.issn.1672-7649.2022.01.006
分类号:U664.33
作者简介:李梦宇(1994-),男,硕士研究生,研究方向螺旋桨流固耦合数值仿真复合材料力学
参考文献:
[1] 鄢蕾. 复合材料螺旋桨流固耦合数值计算[D]. 武汉:华中科技大学, 2018.
[2] YOUNG Y L. Fluid–structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids & Structures, 2008, 24(6): 799–818
[3] 黄政, 熊鹰, 杨光. 基于Ansys ACP的复合材料螺旋桨流固耦合计算方法[J]. 计算力学学报, 2017, 34(4): 501–506
HUANG Z, XIONG Y, YANG G. Fluid-structure coupling calculation method of composite propeller based on Ansys ACP[J]. Chinese Journal of Computational Mechanics, 2017, 34(4): 501–506
[4] 陈悦, 朱锡, 周振龙. 考虑铺层的复合材料螺旋桨流固耦合计算及验证[J]. 船海工程, 2014, 43(02): 57–61
[5] 刘影, 张晶, 吴钦, 等. 复合材料螺旋桨水动力性能与结构响应数值研究[J]. 北京理工大学学报, 2021, 41(3): 266–273
LIU Y, ZHANG J, WU Q, et al. Numerical study on hydrodynamic performance and structural response of composite propellers[J]. Journal of Beijing Institute of Technology, 2021, 41(3): 266–273
[6] 曾志波, 姚志崇, 王玮波. 复合材料螺旋桨流固耦合分析方法研究[J]. 船舶力学, 2012, 16(5): 477–483
ZENG Z B, YAO Z C, WANG w b. Study on fluid-structure coupling analysis method of composite propellers[J]. Journal of Ship Mechanics, 2012, 16(5): 477–483
[7] ZHANG H, WU Q, LI Y, et al. Numerical investigation of the deformation characteristics of a composite hydrofoil with different ply angles[J]. Ocean Engineering, 2018, 163(1): 348–57
[8] RAMAKRISHNA S, et al. CFD analysis of a propeller flow and cavitation[J]. International Journal of Computer Applications, 2012, 55(16): 26–33
[9] NY A, MA A, MK B. An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers[J]. Ocean Engineering, 2019, 171: 139–50