随着大型化、高速化船舶的发展,桨轴系统的工作负荷加重,尺寸增大,尾轴承的润滑状态会改变轴系的支撑特性,而对支撑系统敏感的横向振动也就更容易受到影响。以某实验室长轴系为研究对象,建立尾轴承实体模型,采用多点支撑,建立水润滑轴承的润滑特性模型,计算基于流固耦合的轴系横向振动特性,并与传统单点支撑的轴系横向振动计算进行对比。结果表明,基于流固耦合的轴系模型更能反映出真实的轴系振动特性。
With the development of large-scale and high-speed ships, the working load of propeller-shaft system becomes more massive, and the dimension increases, the Lubrication State of the tail bearing will change the supporting characteristics of shaft system. The lateral vibration, which is sensitive to the support system, is more easily affected. In this paper, the solid model of tail bearing is established, and the lubrication characteristic model of water-lubricated bearing is established by using multi-support. Compared with the traditional single-point support, the lateral vibration characteristic of the shaft system based on the fluid-solid coupling is calculated, and the fluid-solid coupling model can reflect closely the natural vibration characteristics of the shafting.
2022,44(1): 34-38 收稿日期:2021-03-12
DOI:10.3404/j.issn.1672-7649.2022.01.007
分类号:U661
基金项目:国家自然科学基金资助项目(52071244)
作者简介:沈理姣(1987-),女,博士,工程师,研究方向为舰船噪声控制
参考文献:
[1] MERZ S , KINNS R , KESSISSOGLOU N, et al. Structural-acoustic sensitivity analysis of propulsion system parameters for a coupled FE/BE model of a submarine[C]//Proceeding of the 16th International Congress on Sound and Vibration. Krakow, Poland: IIAV, 2009: 2341−2348.
[2] FENG G P, ZHANG Z Y, CHEN Y, et al. Research on transmission paths of a coupled beam-cylindrical shell system by power flow analysis[J]. Journal of Mechanical Science and Technology, 2009, 23(8): 2138–2148
[3] 娄本强, 嵇春艳. 船用螺旋桨流固耦合振动特性分析[J]. 大连理工大学学报, 2019, 59(2): 154–162
LOU Benqiang, JI Chunyan. FSI vibration characteristics analysis of marine propeller[J]. Journal of Dalian University of Technology, 2019, 59(2): 154–162
[4] 李小军, 朱汉华, 熊维, 等. 基于流固耦合的船舶轴-桨耦合振动特性分析[J], 舰船科学技术, 2017.39(7): 19−23.
LI Xiaojun, ZHU Hanhua, XIONG Wei, et al. Coupled vibration characteristic analysis of shaft-propeller system of ship based on fluid structure interaction[J]. Ship Science and Technology, 2017.39(7): 19-23.
[5] 邹冬林. 桨-轴系统双向流固耦合动力学分析及其纵向激励力特性研究[D]. 上海: 上海交通大学, 2017
ZHOU Donglin. Study on fluid-structure interaction dynamics of propeller-shaft systems and longitudinal exciting force characteristics[D]. Shanghai: Shanghai Jiaotong University, 2017.
[6] 夏极, 蔡耀全, 刘金林, 等. 轴承油膜动力特性系数对轴系回旋振动影响[J]. 舰船科学技术, 2016, 38(1): 62–66
XIA Ji, CAI Yaoquan, LIU Jinlin, et al. Effects of bearing oil dynamic coefficient on shafting whirling vibration[J]. Ship Science and Technology, 2016, 38(1): 62–66
[7] WODTKE M, OLSZEWSKI A, WASILCZUK M. Application of the fluid–structure interaction technique for the analysis of hydrodynamic lubrication problems[J]. Proc IMech E Part J:J Engineering Tribology, 2013(1): 1–10
[8] 覃文源. 尾轴承摩擦力作用下推进轴系弯-扭耦合振动特性分析[D]. 上海: 上海交通大学, 2013.
QIN Wenyuan. Analysis of bending-torsional coupling vibration characteristics of propulsion shaft system under the action of stern bearing friction[D]. Shanghai: Shanghai Jiao tong University, 2013.
[9] 王贤烽, 周继良, 曾庆键. 船舶推进轴系轴承油膜刚度的计算研究[J]. 武汉造船, 1997(1): 25–28
WANG Xianfeng, ZHOU JIliang, ZENG Qinjian. Calculation study of oil film stiffness of marine propulsion shafting bearing[J]. Wuhan Shipbuilding, 1997(1): 25–28
[10] 张振果, 张志谊, 王剑, 等. 螺旋桨推进轴系摩擦自激扭转振动研究[J]. 振动与冲击, 2013, 19: 153–158
ZHANG Zhenguo, ZHANG Zhiyi, WANG Jian, et al. Friction induced self-excited vibration in a propeller shaft system[J]. Shock and Vibration, 2013, 19: 153–158
[11] 朱汉华, 严新平, 刘正林, 等. 油膜力耦合下质量偏心对船舶轴系振动的影响[J]. 船舶工程, 2008(2): 20–23
ZHU Hanhua, YAN Xinping, LIU Zhenglin, et al. Influence of mass eccentricity coupling with oil pressure on the vibration property of the ship shafting[J]. Ship Engineering, 2008(2): 20–23
[12] ERKAEV N V, NAGAITSEVA N A. Mathematical model of the unsteady motion of a shaft in a hydrodynamic plain bearing[J]. Journal of Applied Mechanics and Technical Physics, 2003, 44(5): 699–707
[13] Li Z Y, Yang S D. Development of hydraulic pump to operate with raw water[C]//Proceeding of 1998 ASME International Fluids Engineering Division Summer Meeting. June, 1998, Washington D. C. USA.