研究船舶在波浪环境中的自由操纵运动对船舶操纵性具有重要意义。本文对ONRT全附体模型在规则波中的回转运动进行仿真研究。采用基于结构化动态重叠网格的自研CFD软件HUST-Ship求解RANS方程与船体六自由度运动方程的耦合问题。RANS方程通过有限差法离散,并使用PISO算法进行求解。波浪中操纵运动使用了移动计算域方法,而且船后螺旋桨使用迭代型体积力方法替代,提高计算效率。波浪回转操纵运动特征参数(纵距、正横距、战术直径)的预报结果与试验数据进行了比较,验证了仿真的可靠性。进一步分析了运动特征参数的变化,研究波浪对回转运动的影响。
It is very important for ship maneuverability to study the maneuvering motion of a free-running ship in waves. This paper presents the simulation studies of the turning motion in the regular wave of the full-appendage ONRT model. Numerical simulations are performed using viscous CFD code HUST-Ship to solve the RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations and dynamic overset grids designed for ship hydrodynamics. RANS equations are discretized by finite difference method and solved by PISO algorithm. The moving domain method is adopted and the propeller is replaced by the iterative body-force method for the turning motion in wave to improve the computation efficiency. The simulated parameters of the turning trajectories in wave are compared with test data to verify the reliability of simulation. Furthermore, the motion characteristic parameters are analyzed to study the influence of waves on the turning motion in this paper.
2022,44(1): 39-45 收稿日期:2021-05-14
DOI:10.3404/j.issn.1672-7649.2022.01.008
分类号:U661.33+8
基金项目:国家自然科学基金资助项目(52071148);中央高校基本科研业务费资助项目(2021JYCXJJ038)
作者简介:操戈(1983-),男,工程师,研究方向为舰船水动力
参考文献:
[1] 冯大奎, 余嘉威, 张志国, 等. 基于HUST-Ship的船舶操纵数值水池参数建模[J]. 华中科技大学学报(自然科学版), 2020, 48(10): 69–74
FENG D, YU J, ZHANG Z, et al. Parametric modeling of ship maneuverable numerical tank based on HUST-Ship[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(10): 69–74
[2] 袁桂蓉. 吊舱推进器船舶的操纵系统数学建模与仿真[J]. 舰船科学技术, 2019, 41(6): 40–42
YUAN G. Mathematical modeling and simulation of maneuvering system of podded propeller ship[J]. Ship Science and Technology, 2019, 41(6): 40–42
[3] 陈纪军, 潘子英, 彭超, 等. 十字形和X形艉舵航行体的水动力特性对比[J]. 中国舰船研究, 2020, 15(2): 8–16
CHEN J, PAN Z, PENG C, et al. Comparison of hydrodynamic characteristics of SUBOFF with cruciform and X-form rudder arrangement[J]. Chinese Journal of Ship Research, 2020, 15(2): 8–16
[4] MOFIDI A, CARRICA P. Simulations of zigzag maneuvers for a container ship with direct moving rudder and propeller[J]. Computers and Fluids, 2014, 96(11): 191–203
[5] CARRICA P, MOFIDI A, ELOOT A, et al. Direct simulation and experimental study of zigzag maneuver of KCS in shallow water[J]. Ocean Engineering, 2016, 112: 117–133
[6] MARTIN J, MICHAEL T, CARRICA P. Submarine maneuvers using direct overset simulation of appendages and propeller and coupled CFD/potential flow propeller solver[J]. Journal of Ship Research, 2015, 59(1): 31–48
[7] 邱云明, 陆冬青, 邓锐. 船舶危险对遇时水动力数值研究[J]. 舰船科学技术, 2020, 42(5): 76–80,102
QIU Y, LU D, DENG Y. Numerical calculation of the hydrodynamic interaction between two vessels in dangerous head-on situation[J]. Ship Science and Technology, 2020, 42(5): 76–80,102
[8] WANG J, WAN D. CFD investigations of ship maneuvering in waves using naoe-FOAM-SJTU solver[J]. Journal of Marine Science and Application, 2018, 17: 443–458
[9] 王建华, 万德成. CFD数值模拟船舶在波浪中的回转操纵运动[J]. 中国舰船研究, 2019, 14(1): 1–8
WANG J, WAN D. CFD simulation of ship turning motion in waves[J]. Chinese Journal of Ship Research, 2019, 14(1): 1–8
[10] TOKGOZ E. A CFD study on the propeller-hull interaction flow in waves using body-force distribution model [D]. Osaka: Osaka University, 2015.
[11] FENG D, CAI X, SUN Y, et al. Numerical manoeuvrable tank on wave based moving domain[C]//Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: CFD and FSI. Glasgow, Scotland, UK. June 9–14, 2019. V002T08A040. https://doi.org/10.1115/OMAE2019-95714.
[12] CARRICA P, CASTRO A, STERN F. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of Marine Science and Technology, 2010, 15(4): 316–330
[13] Tokyo 2015. A Workshop on CFD in Ship Hydrodynamics [DB/OL].https://t2015.nmri.go.jp/index.html.
[14] Simman 2020. Workshop on verification and validation of ship manoeuvring simulation methods [DB/OL]. (2020-06-30). http://www.simman2019.kr.
[15] FENG D, YU J, HE R, et al. Improved body force propulsion model for ship propeller simulation[J]. Applied Ocean Research, 2020, 104: 102328
[16] FENG D, YU J, HE R, et al. Free running computations of KCS with different propulsion models[J]. Ocean Engineering, 2020, 214: 107563
[17] LIU L, CHEN M, YU J, et al. Full-scale simulation of self-propulsion for a free-running submarine[J]. Physics of Fluids, 2021, 33(4): 47103
[18] MENTER F. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994.
[19] BURG C. Single-phase level set simulations for unstructured incompressible flows[C]//17th AIAA Computational Fluid Dynamics Conference, June 6, 2005 - June 9, 2005. Toronto, ON, Canada: American Institute of Aeronautics and Astronautics Inc.
[20] 冯大奎, 鲁晶晶, 魏鹏, 等. 基于Level-set方法的三维数值水池造波研究[J]. 水动力学研究与进展(A辑), 2018, 33(4): 435–444
FENG D, LU Jing-jing, WEI P, et al. The research of wave-generating in 3-D numerical wave tank based on Level-set method[J]. Chinese Journal of Hydrodynamics, 2018, 33(4): 435–444