传统的被动目标识别主要依靠声呐员的作用,随着人工智能的迅速发展,水下目标智能识别成为未来发展的趋势。针对这一问题,根据舰船辐射噪声特性,提出基于特征融合的舰船目标识别方法,通过提取基于人耳听觉感知的梅尔倒谱系数特征、基于循环平稳分析的谱相关密度函数特征,构建特征层融合和决策层融合的特征融合模型,利用深度学习中的卷积神经网络进行舰船目标识别。利用4种舰船辐射噪声实测数据进行验证,结果表明,所提出的决策层融合算法能够明显提高舰船目标识别率。
The traditional passive target recognition mainly depends on the sonarman. With the rapid development of artificial intelligence, underwater target intelligent recognition becomes the future development trend. To solve this problem, according to the characteristics of ship radiated noise, a method of ship target recognition based on feature fusion is proposed. Based on the Mel frequency cepstrum coefficient feature and spectral correlation density function feature,a feature fusion model is constructed by using convolution neural network.The measured data of four underwater acoustic signal is verified. The result shows the decision level fusion algorithm can improve the recognition accuracy.
2022,44(1): 146-149 收稿日期:2020-12-16
DOI:10.3404/j.issn.1672-7649.2022.01.028
分类号:TB532
作者简介:王莹(1992-),女,助理工程师,研究方向为目标探测与识别
参考文献:
[1] 程锦盛, 杜选民, 等. 采用深度学习方法的水下目标听觉特征提取与识别技术研究[J]. 声学技术, 2018, 37(6): 167–168
CHENG Jin-sheng, DU Xuan-min, et al. Research on extraction and recognition technique to auditory features of underwater target based on deep learning[J]. Technical Acoustics, 2018, 37(6): 167–168
[2] 曾赛, 杜选民. 水下目标多模态深度学习分类识别研究[J]. 应用声学, 2019, 38(4): 589–594
ZENG Sai, DU Xuanmin. Multimodal underwater target recognition method based on deep learning[J]. Journal of Applied Acoustics, 2019, 38(4): 589–594
[3] 陈雪峰, 张中戈, 等. 基于线谱和DEMON谱的水声目标分类[J]. 指挥信息系统与技术, 2019, 10(4): 61–65
CHEN Xuefeng, ZHANG Zhongge, et al. Classification for underwater acoustic targets based on line spectrum and DEMON spectrum[J]. Command Information System and Technology, 2019, 10(4): 61–65
[4] 韩纪庆, 张磊, 等. 语音信号处理[M]. 北京: 清华大学出版社, 2019.
[5] 陈进, 董广明. 机械故障特征提取的循环平稳理论及方法[M]. 上海: 上海交通大学出版社, 2013.
[6] 魏秀参. 解析深度学习卷积神经网络原理与视觉实践[M]. 北京: 电子工业出版社, 2018.