当代战争形态正向网络化、智能化、精确化发展,未来战场情报信息的分析与敌情规律挖掘对战争胜负的影响至关重要。针对舰船活动军事领域情报信息智能分析的迫切需求,研究面向军事垂直领域的外军舰船知识图谱构建及舰船活动规律挖掘与分析技术。基于信息挖掘技术,对舰船的历史信息进行时空及事件关联分析,形成面向外军舰船活动垂直领域情报信息的知识图谱分析系统,系统支持基于时间、区域、对象、事件等的查询与规律挖掘,并能够对舰船活动信息进行多维度画像。
The contemporary forms of warfare are developing toward networking, intelligence, and precision. The analysis of future battlefield intelligence information and the mining of the laws of the enemy are crucial to the outcome of wars.In response to the urgent need for intelligent analysis of intelligence information in the military field of ship activities, the construction of foreign warship knowledge graphs for military vertical fields and the mining and analysis technology of ship activity rules are studied.Based on information mining technology, conduct temporal-spatial and event correlation analysis on historical information of ships to form a knowledge graph analysis system for intelligence information in the vertical field of foreign warship activities. The system supports queries and rules based on time, area, object, event, etc.Dig, and be able to carry out a multi-dimensional portrait of ship activity information.
2022,44(1): 159-164 收稿日期:2021-08-19
DOI:10.3404/j.issn.1672-7649.2022.01.033
分类号:U674.7+02
作者简介:任昊利(1972-),男,副研究员,主要研究方向为太空安全技术,人工智能技术,作战信息系统
参考文献:
[1] 陈成, 陈跃国, 等. 意图知识图谱的构建与应用[J]. 大数据, 2020(6): 57–68
[2] PAN JZ, HORROCKS I. RDFS(FA): Connecting RDF(S) and OWL DL[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(2): 192–206.
[3] 杨秀璋. 实体和属性对齐方法的研究与实现[D]. 北京: 北京理工大学, 2016.
[4] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582–600
[5] SOHN JS, CHUNG IJ. Dynamic FOAF management method for social networks in the social web environment[J]. The Journal of Supercomputing, 2013, 66(2): 633–648.
[6] https://blog.csdn.net/panghaomingme/article/details/120271840
[7] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. AcM, 2008: 1247−1250.
[8] 张佳宇. 基于本体的煤矿安全领域知识图谱研究[D]. 太原: 太原科技大学, 2019.
[9] Neo4j[EB/OL].https://neo4j.com/ [2018-03-06].
[10] AllegroGraph.https://allegrograph.com/, [2018-02-08].
[11] LENT B., SWAMI A., WIDOM J.. Clustering association rules[C]//Proceedings of the 13th International Conference on Data Engine, 1997: 220−231.