为寻求一种具有良好稳定性和气动效率的翼型,进而提高潜艇指挥台围壳和尾翼的稳定性和气动性能,受到座头鲸和猫头鹰独特翼型结构的启发,首先设计两类锯齿状仿生翼型,通过数值求解非定常Navier-Stokes方程,揭示相同雷诺数条件和相同攻角下不同锯齿尺寸的仿生锯齿翼型的气动特性与流场特性,并与NACA0012翼型性能进行比较。研究结果表明,升阻比有所提高,流场品质有所提升,有利于气动效率的提高,为潜艇性能提升打下良好基础。
In order to seek an airfoil with good stability and aerodynamic efficiency, and to improve the stability and aerodynamic performance of the submarine command podium shell and stern wing, inspired by the unique airfoil structure of humpback whales and owls, two types were first designed, the zigzag bionic airfoil, by numerically solving the unsteady Navier-Stokes equation, reveals the aerodynamic characteristics and flow field characteristics of the bionic zigzag airfoil with different serrated sizes under the same Reynolds number condition and the same angle of attack, and compared with NACA0012 airfoil performance for comparison. The research results show that the lift-to-drag ratio and the quality of the flow field have been improved, which is conducive to the improvement of aerodynamic efficiency and lays a good foundation for the improvement of submarine performance.
2022,44(2): 18-23 收稿日期:2020-11-02
DOI:10.3404/j.issn.1672-7649.2022.02.004
分类号:U661.1
基金项目:国家自然科学基金面上项目(52071334)
作者简介:关惠仁(1996-),男,硕士研究生,研究方向为舰艇声隐身
参考文献:
[1] 李典, 刘小民. 几种仿生翼型气动性能及噪声特性研究[J]. 工程热物理学报, 2015, 36(12): 2629−2632.
[2] TIAN W J, LIU F Y, Gong Q, et al. Study on aerodynamic performance of the bionic airfoil on the swallow’s wing[J]. Journal of Mechanics in Medicine and Biology, 2013, 13(6): 1−10.
[3] 单建华, 丁宏宇, 王孝义, 等. 仿生非光滑表面机翼的气动性能数值模拟[J]. 安徽工业大学学报(自然版), 2017 (1): 55−59.
[4] BOESE M, FOTTNER L. Effects of riblets on the loss behavior of a highly loaded compressor cascade[C]// Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 2002: 743 −750.
[5] CHAMORRO L P, ARNDT R E, SOTIROPOULOS F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies[J]. Renewable Energy, 2013: (50): 1095−1105.
[6] 石磊, 张成春, 王晶, 等. NACA0018翼型模型的仿生降噪. 吉林大学学报(工学版), 2011(6): 664−668.
[7] LILLY D K. A proposed modification of the germano subgrid-scale closure mode[J]. Physics of Fluids A, 1992, 4(3): 633−635.
[8] ABBOTT I H, DOENHOFF A E. Theory of wing sections, including a summary of airfoil data[J]. Dover Publications, Mineola, NY, USA, 1959.
[9] WASALA S H, STOREY R C, NORRIS S E, et al. Aeroacoustics noise prediction for wind turbines using large eddy simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 17−29.
[10] GREGORY N, O' REILLY C L. low-speed aerodynamic characteristics of NACA0012 aerofoil section, including the effects of upper-surface roughness simulating hoar frost[j]. Aeronautical Research Council Reports and Memoranda, 1970.
[11] 刘顺超, 张开顺, 吴正人, 等. 仿生翼型的气动特性数值模拟研究[J]. 应用能源技术, 2018(1): 28–31
[12] AGUILER F G, GILL J R, ANGLAND D, et al. Wavy leading edge airfoils interacting with anisotropic turbulence [C]// 23rd AIAA/CEAS Aeroacoustics Conference. AIAA, 2017.
[13] 王松岭, 张开顺, 吴正人, 等. 基于大涡模拟方法仿生翼型气动特性数值模拟[J]. 科学技术与工程, 2018, 18(19): 296−300.