轮船舱室的减振设计需要对舱室的固有振动特性和响应进行分析。基于Ansys Workbench对舱室进行模态分析,利用壳单元对舱室进行建模,获得其前20阶的固有频率、振型,并对仿真结果和试验结果进行对比。利用半功率带宽法测出舱室阻尼比,在模态分析基础上对舱室进行谐响应分析,得到位移和频率响应曲线。考虑粘弹性材料频变特性,对敷设粘弹性层舱室进行谐响应分析。研究结果表明,舱室的模态仿真结果和试验测试的结果吻合良好,误差均在6%以内,试验验证了模型和计算方法的正确性。舱室的位移幅值在28 Hz时振幅最大,即模态阶数的第2阶为舱室易发生共振时的频率,从而为舱室的设计和优化提供了有效参考。敷设粘弹性层后舱室振动响应降低了19.6%,验证了该粘弹性阻尼材料能够有效抑制在基础激励下的振动响应。
The natural vibration characteristics and response of the cabin need to be analyzed during the vibration reduction design. In this paper, modal analysis of the cabin is carried out based on Ansys Workbench platform, and the cabin model is established by shell elements.The natural frequencies and vibration modes of the first 20 orders are obtained, and the simulation results are compared with the experimental results.The damping ratio of the cabin is obtained by the half power bandwidth method. On the basis of modal analysis, the harmonic response of the cabin is analyzed, and the displacement and frequency response curves are obtained.The harmonic response of the cabin with viscoelastic layer is analyzed considering the frequency-dependent characteristics of viscoelastic material. The results show that the modal simulation results are basically consistent with the test results,and the errors are within 6%. The accuracy of the model and caculation method are verified. The displacement amplitude of the cabin is maximum at 28 Hz, that is, the second-order natural frequency is the frequency when the cabin is prone to resonance, which provides an effective reference for the design and optimization of the cabin.The vibration response of the cabin with viscoelastic layer is reduced by 19.6%, which verifies that the viscoelastic damping can effectively suppress the vibration response.
2022,44(2): 59-63 收稿日期:2021-04-23
DOI:10.3404/j.issn.1672-7649.2022.02.012
分类号:U661.42
基金项目:山东省自然科学基金面上项目(ZR2020ME121);清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF18B12);国家自然科学基金资助项目(11502227)
作者简介:王娇(1985-),女,博士,副教授,研究方向为非线性振动、阻尼减振
参考文献:
[1] 陈越澎, 谭林森. 船舶舱室噪声控制技术综述[J]. 武汉造船, 1995: 34−40.
[2] 宋现国, 赵日定. 海工船舱室噪声控制技术探索[J]. 船舶工程, 2015, 37(12): 82–86
[3] 吴硕. 46 m海洋工作船振动特性分析[D]. 大连: 大连理工大学, 2012.
[4] 王啸宇, 成磊. 全船振动分析等效建模方法[J]. 噪声与振动控制, 2020, 40(4): 190−193.
[5] 李良碧, 王国治, 温华兵. 舰船浮筏隔振特性的有限元分析及试验研究[J]. 华东船舶工业学院学报, 2001, 15(2): 72–76
[6] 乔志, 褚夫强, 渠鸿飞, 等. 敷设约束阻尼层舱室振动噪声特性的试验与仿真对比[J]. 材料开发与应用, 2014, 29(3): 14–20
[7] 梁炳南. 船舶浮动舱室振动和声学性能研究[D]. 大连: 大连海事大学, 2016.
[8] 仇远旺, 章炜, 郑发彬, 等. 船舶模型阻尼减振试验研究[J]. 工程与试验, 2010, 50(4): 22–23,77
[9] 温华兵. 复杂薄壳结构振动声辐射特性及控制技术研究[D]. 镇江: 江苏大学, 2014.
[10] 王国庆. 海洋工程舱壁结构减振降噪问题研究[D]. 青岛: 中国海洋大学, 2013.
[11] 刁杰胜, 刘文慧, 尹杨平. 白车身固有振动特性CAE及试验分析对比[J]. 井冈山大学学报(自然科学版), 2019, 40(2): 72–76
[12] 周炬, 苏金英. ANSYS Workbench有限元分析实例详解[M]. 北京: 人民邮电出版社, 2017.
[13] 王卓. 网壳结构的模态局部化现象及其影响[M].北京: 中央广播电视大学出版社, 2015.
[14] 闫凯, 宋庆军, 孙秋香, 等. 正弦振动试验及其相关参数的计算[J]. 实验室科学, 2013, 16(6): 43–44,47