提出一种船用多效竖管升膜蒸发海水淡化系统;构建热力过程数学模型,考虑海水沸点升高和蒸汽阻力压降等引起的传热温差损失;采用对比研究的方式,计算分析相同淡水产量下,有无热力蒸汽压缩时,首效加热蒸汽温度、末效蒸发温度、浓缩比对系统造水比、比传热面积、比冷凝水量等热力性能的影响。结果表明:竖管升膜蒸发海水淡化系统具有大温差传热的特征,设计、运行应控制最小有效传热温差,首效加热蒸汽温度可提升至80℃左右;首效加热蒸汽温度和末效蒸发温度对比传热面积影响较大;浓缩比有设计最优值;热力蒸汽压缩对系统性能有明显提升。
A multi effect shipboard vertical rising film evaporation desalination system is proposed. The mathematical model is established for thermal characteristics analysis, in which various thermodynamic losses caused by boiling point elevation and vapor pressure drop are considered. Based on the uniform flux of water product, the influence of the thermal vapor compression, the heating steam temperature, the evaporation temperature in the last effect and concentration ratio on the thermal performance including gained output ratio, specific heat transfer area, specific cooling seawater, et. al is analyzed by the way of comparative study. The results show that, in the vertical rising film evaporation desalination system with characteristics of large temperature difference, the minimum effective heat transfer temperature difference should be controlled in design and operation, the first effect heating steam temperature can be raised to about 80 ℃, the specific heat transfer area is greatly affected by the heating steam temperature and the evaporation temperature in the last effect, the concentration ratio has the optimal design value, and the thermal performance of the system is greatly improved by the thermal steam compressor.
2022,44(2): 78-85 收稿日期:2020-11-25
DOI:10.3404/j.issn.1672-7649.2022.02.015
分类号:P747
基金项目:国家自然科学基金资助项目(51936002);国家科技支撑计划项目(2014B09B00);大连市科技创新基金项目(2020JJ26SN063)
作者简介:杨勇(1981-),男,博士,副教授,研究方向为多效蒸发海水淡化
*通讯作者:沈胜强,男,博士,教授,E-mail:zzbshen@dlut.edu.cn
参考文献:
[1] ADAMSON W L, RANKIN B H, HUCKENPOEHLER W B. Energy consumption for production of shipboard freshwater[J]. Naval Engineers Journal, 1976, 88(2): 117–130
[2] 陈棫端, 吕东方, 于开录, 等. 舰用海水淡化技术装备现状及发展趋势[J]. 舰船科学技术, 2014, 36(8): 1–5
[3] 周北辰, 刘晓华, 沈胜强. 竖管升膜蒸发海水淡化装置热力性能研究[C]//高等学校工程热物理第十九届全国学术会议, 郑州, 中国, 2013, A-13023.
[4] 陈凤章. 船用海水淡化装置的选型研究[J]. 机电设备, 1993, 5: 12–18
[5] TEWARI P K, VERMA R K, MISRA B M, et al. Fresh water generators onboard a floating platform[C]//Proceedings of a Technical Committee meeting held in Obninsk: Floating Nuclear Energy Plants for Seawater Desalination, International Atomic Energy Agency(IAEA), Obninsk, Russian Federation, 1995: 65-70.
[6] 艾钢, 吴建平, 朱忠信. 海水淡化技术的现状和发展[J]. 净水技术, 2004, 23(3): 24–28
[7] 菲利普刘, 陈凤章. 船用淡化装置的新方案——热力压缩式蒸馏装置[J]. 机电设备, 1992, 4: 38–45
[8] 杨家臣, 刘军. 低温闪蒸法海水淡化技术在海洋石油平台的应用[J]. 天津科技, 2013, 5: 6–8
[9] 郝铭, 陈丰波, 马金喜, 等. 渤海稠油油田注汽锅炉选型技术分析[J]. 中国海洋平台, 2018, 33(3): 67–71
[10] UCHE J, ARTAL J, SERRA L. Comparison of heat transfer coefficient correlations for thermal desalination units[J]. Desalination, 2003, 152(1–3): 195–200
[11] COULSON M, MCNELLY M J. Transfer in a climbing film evaporator. Part II[J]. Chemical engineering research & design, 1956, 34: 247–257
[12] RAHMAN H, HAWLADER M N A, MALEK A. An experiment with a single-effect submerged vertical tube evaporator in multi-effect desalination[J]. Desalination, 2003, 156(1–3): 91–100
[13] YANG Luopeng, CHEN Xue, SHEN Shengqiang. Heat-transfer characteristics of climbing film evaporation in a vertical tube[J]. Experimental Thermal and Fluid Science, 2010, 34: 753–759
[14] 张琳, 崔腾飞, 蒋枫, 等. 升膜蒸发管内流型可视化及传热性能[J]. 化工进展, 2015, 34(5): 1259–1263
[15] 郑飞飞, 杜亚威, 刘燕, 等. 多相流蒸发法高浓缩率海水淡化系统的热力学性能分析[J]. 水处理技术, 2014, 40(11): 52–60
[16] El-DESSOUKY H T, ETTOUNEY H M. Fundamentals of salt water desalination [M]. Netherlands: Elsevier Science B. V., 2002: 596-597.
[17] 韩冰, 李艳霞, 武洪强, 等. 船舶热力蒸汽压缩海水淡化装置性能分析[J]. 舰船科学技术, 2014, 36(4): 72–77
[18] 宋煜. 热力蒸汽压缩器性能计算方法研究[D]. 大连: 大连理工大学, 2010: 23–30.
[19] 刘晓华, 沈胜强, Genthner K, 等. 多效蒸发海水淡化系统模拟计算与优化[J]. 石油化工高等学校学报, 2005, 18(4): 16–19
[20] 张健, 杨立, 袁江涛, 等. 水下航行器热尾流试验研究[J]. 实验流体力学, 2008, 22(3): 7–13
[21] ZHOU Shihe, GONG Luyuan, LIU Xinyu, et al. Mathematical modeling and performance analysis for multi-effect evaporation/multi-effect evaporation with thermal vapor compression desalination system[J]. Applied Thermal Engineering, 2019, 159: 1–14