空调管路系统噪声是船舶舱室噪声的主要来源之一,在有限空间中实现管路中低频消声是舱室噪声控制中的难题,微孔消声器具有无纤维、极低的流阻流噪声以及良好的中低频消声性能,在通流管道噪声控制中具有良好的应用前景。基于切向流条件下微孔板的现有阻抗模型,通过一维平面波方法推导得到气流条件下同轴直通微孔管消声器的传递矩阵与传声损失并进行验证,开展影响因素分析并提出了微孔消声器设计原则,针对船舶空调通风管路系统噪声控制开展了微孔消声器的优化设计,实现了全频段宽频消声,消声效果明显优于同等外形尺寸的传统抗性消声器,可为管路声学设计提供有效技术手段。
Noise of air-conditioning pipeline system is one of the main sources of ship cabin noise. It is a difficult problem in cabin noise control to achieve middle-low frequency silence in limited space. Microperforated muffler has no fiber, low flow resistance, low flow noise and good performance of middle-low frequency muffling. It has a good application prospect in noise control of ventilating duct. Based on the existing impedance model of microperforated plate under grazing flow, the transmission matrix and transmission lose of coaxial through microperforated muffler under airflow condition are deduced and verified by one-dimensional plane wave method. The influencing factors are analyzed and the desigh principle of microperforated muffler is put forward. The optimization desigh of microperforated muffler is carried out for noise control of air conditioning ventilation duct system. The desigh achieves full-frequency bandwith muffling, and the muffler effect is obviously better than that of traditional ressitance muffler with the same shape size. It can provide an effective technical means for pipeline acoustic desigh.
2022,44(2): 91-97 收稿日期:2021-03-31
DOI:10.3404/j.issn.1672-7649.2022.02.017
分类号:TB535;U667.7
基金项目:工信部高技术船舶科研项目(2016[546])
作者简介:黄伟稀(1986-),男,硕士,高级工程师,研究方向为船舶振动噪声
参考文献:
[1] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975(1): 38–50
[2] 方丹群, 孙家其. 微穿孔板消声器的实验研究与应用[J]. 环境工程, 1983.
[3] 方丹群, 孙家其, 冯瑜正. 微穿孔板消声器及其在高速气流下的消声性能[J]. 物理, 1975(4):4.
[4] 马大猷. 高声强下微穿孔板
J]. 声学学报, 1996, 21(1): 10–14
[5] CRANDALL I. Theory of Vibrating Systems and Sound[M]. Van Nostrand, 1926: 229.
[6] 刘克, NOCKE C, 马大猷. 扩散场内微穿孔板吸声特性的实验研究[J]. 声学学报. 2000, 25(3): 212-218.
[7] 蔺磊, 王佐民, 姜在秀. 微穿孔共振吸声结构中吸声材料的作用[J]. 声学学报. 2010, 35(4): 386-392.
[8] Iljae Lee M S. Acoustic characteristics of perforated dissipative and hybrid silencers[D]. Columbus: The Ohio State University. 2005.
[9] SAKAGAMIL K, KOBATAKE S. Sound absorption characteristics of a single microperforated panel absorber backed by a porous absorbent larer[J]. Acoustics Australia. 2011, 39(3): 95−100.
[10] CASTILLO R G V. Microstructure influence on acoustical properties of multi-scale porous materials[D]. Salford University of Salford. 2011.
[11] VILLAMIL H R. Acoustic properties of microperforated panels and their optimization by simulated annealing[D]. Universidad Politecnica de Madrid, 2012.
[12] X. N. WANG, Y. S. CHOY, L. CHENG. Hybrid noise control in a duct using a light microperforated plate[J]. The Journal of the Acoustical Society of America. 2012, 132(6): 3778−3787.
[13] 孙文娟, 苏巧平, 孔德义, 等. 计及板材料性能影响的微穿孔板吸声特性仿真计算[J]. 振动与冲击. 2013, 32(9): 150-154+172.
[14] BAUER A B. Impedance theory and measurements on porous acoustic liners[J]. Journal of Aircraft, 1977, 14(8): 720-728.
[15] SULLIVAN. J. W. Some gas flow and acoustic pressure measurement inside a concentric-tube resonator[J]. The Journal of the Acoustical Society of America, 1984, 76(2): 327−484.
[16] RAO K N, MUNJAL M L. Experimental evaluation of impedance of perforates with grazing flow[J]. Journal of Sound and Vibration, 1986, 108(2): 283–295
[17] KIRBY R, CUMMINGS A. The impedance of perforated plates subjected to grazing gas flow and backed by porous media[J]. Journal of Sound and Vibration, 1998, 217(4): 619-636.
[18] 景晓东, 孙晓峰. 穿孔板切向流效应的理论和实验研究[J]. 航空学报, 2002: 405–410
[19] Lee. S. H, Ih. J. G. Empirical model of the acoustic impedance of a circular orifice in grazing mean flow[J]. The Journal of the Acoustical Society of America, 2003, 111(4): 98−113.
[20] 康钟绪, 季振林, 连小珉, 等. 掠过流作用下穿孔板的声阻抗[J]. 声学学报, 2011, 36(1): 51–59
[21] 黄伟稀, 侯宏等. 基于切向流效应的宽频带穿孔板声衬的研究[J]. 航空动力学报, 2012, 27(4): 7.
[22] ALLAM S, ABOM M. Experimental Characterization of Acoustic liners with extended teaction[J]. The 14th AIAA/CEAS Conference, 2008, 3074.
[23] DAVIS D D, STOKES G M. Theoretical and experimental investigation of mufflers with comments on engine-exhaust muffler desigh[R]. Washington: National Advisory Committee for Aeronautics. Report No. 1192, 1954.
[24] IGARASHI J. Fundamentals of acoustical silencers[R]. I: Report No. 339, 1958; II: Report No. 344, 1959; III: Report No. 351, 1960. Tokyo: Aeronautical Research Institute, University of Tokyo.
[25] SULLIVAN J W, Crocker M J. Analysis of concentric-tube resonators having unpartioned cavities[J]. The Journal of the Acoustical Society of America, 1978, 64(1): 207−215.
[26] SULLIVAN J W. A method for modeling perforated tube muffler components[J]. The Journal of the Acoustical Society of America, 1979, 66(3): 772−778.
[27] MUNJAL M L. Acoustics of ducts and mufflers[M]. New York: Wiley-Interscience, 1987.
[28] 季振林. 消声器声学理论与设计[M]. 北京: 科学出版社, 2015.
[29] 左曙光, 龙国, 吴旭东, 等. 隔板对汽车微穿孔管消声器声学特性的影响[J]. 农业工程学报, 2014, 30(11): 53–59