采用多重重叠网格技术模拟一对称立式水下潜器在三维回转运动过程中水下潜器系统及其系统中导管螺旋桨的水动力特性,提出一种水下潜器三维回转运动数值计算模型,通过指定叠加运动来控制螺旋桨的旋转来对水下潜器的三维回转运动方式进行操纵。计算结果表明:提出的水下潜器三维回转运动数值计算模型可以预报水下潜器三维回转运动的动力状态;水下潜器在其三维回转运动过程中,导管螺旋桨发出的推力表现出稳定的周期性的变化;相比于二维回转运动,水下潜器在进行三维回转运动过程中,由于垂向运动速度分量的存在,导致水下潜器导管螺旋桨推力较二维回转运动条件下小,潜器主体所受垂向流体阻力较二维回转运动条件下更大且波动更加剧烈。
The multi-level overset mesh method is used to simulate thrust performance of ducted propellers attaching to a symmetrical vertical underwater vehicle by using CFD software STAR-CCM+. A three-dimensional rotary motion mathematical model of underwater vehicles was proposed. We use a user defined function to control the three-dimensional rotary motion and designate an additive motion to control the motion of ducted propellers. Simulation results indicate that: the mathematical model proposed in this paper could achieve a three-dimensional rotary motion of an underwater vehicle; during the motion of three-dimensional rotation, the thrust generated by each ducted propeller tend to be a stable and periodic change; the thrust curve of each ducted propeller is more complex with the influence of the main body of underwater vehicle; compared to without the influence of the main body, and the main factor is the current obstructed by the main body of underwater vehicle.
2022,44(2): 104-110 收稿日期:2021-01-19
DOI:10.3404/j.issn.1672-7649.2022.02.019
分类号:U661.31
基金项目:国家自然科学基金资助项目(51979110)
作者简介:张强(1996-),男,硕士研究生,主要从事船舶与海洋工程水动力学研究
参考文献:
[1] WU Jia-ming, YE Jia-wei, YANG Cheng, et al. Experimental study on a controllable underwater towed system[J]. Ocean Engineering, 2004, 32(14): 1803−1817.
[2] ZHANG Jin, LI Wei, YU Jian-cheng, et al. Study of manipulator operations maneuvered by a ROV in virtual environments[J]. Ocean Engineering, 2017, 142: 292–302
[3] 陈健, 吴家鸣, 徐灜, 等. 立式翼型主体拖曳式水下潜器的设计及操纵性能[J]. 海洋技术学报, 2015, 34(4): 1–6
CHEN Jian, WU Jia-ming, XU Ying, et al. Study on the design and control performance of the underwater towed vehicle with vertical airfoil main body[J]. Journal of Ocean Technology, 2015, 34(4): 1–6
[4] 钟乐. 基于动网格与滑移网格混合技术的水下机器人与导管螺旋桨水动力数值研究[D]. 广州: 华南理工大学, 2017.
[5] JASON, EVANS, et al. Dynamics modeling and performance evaluation of an autonomous underwater vehicle [J]. Ocean Engineering, 2004, 31(14): 1835−1858.
[6] 金晓东. 水下拖曳系统水动力性能分析[D]. 广州: 华南理工大学, 2014.
[7] BELLINGHAM J G, ZHANG Y, KERWIN J E, et al. Efficient propulsion for the Tethys long-range autonomous underwater vehicle [C]//Autonomous Underwater Vehicles. IEEE, 2011.
[8] 胡维峰. 海流干扰下的AUV航向保持数值模拟[D]. 大连: 大连海事大学, 2020.
[9] 吴家鸣, 张恩伟, 钟乐. 水下潜器回转运动状态下的推力特性研究[J]. 舰船科学技术, 2018, 40(9): 1–7
WU Jia-ming, ZHANG En-wei, ZHONG Le. Research on underwater vehicle's thrust characteristics in the state of rotary motion[J]. Ship Science and Technology, 2018, 40(9): 1–7
[10] 刘应中, 张怀新, 李谊乐, 等. 21世纪的船舶性能计算和RANS方程[J]. 船舶力学, 2001(5): 66-84.
LIU Ying-zhong, ZHANG Huai-xin, LI Yi-le, et al. Calculations of the ship performances and solving of RANS equations in the 21st century [J]. Journal of Ship Mechanics, 2001(5): 66-84.
[11] Ansys. ANSYS Fluent Theory Guide [DB/CD]. 2020.