考虑水下无人航行器的轨迹跟踪控制,在水动力系数已知的条件下,基于收缩理论设计了全局指数收敛的理想控制器。首先,对收缩理论进行简要的介绍。与常用的李雅普诺夫方法不同,收缩理论在进行控制系统的设计和稳定性分析时,采用虚位移验证系统的稳定性,避免因无明确平衡点信息而带来的阻碍,从而更容易证明控制系统的稳定性。接着,介绍了水下无人航行器的运动学和动力学模型,基于收缩理论设计了理想控制器,并证明了控制器的稳定性。最后对水下无人航行器进行了轨迹跟踪控制仿真,仿真结果验证了本文控制算法的有效性。
Considering the trajectory tracking control of unmanned underwater vehicle, an ideal controller with global exponential convergence is designed based on the contraction theory under the condition that the hydrodynamic coefficient is known. First of all, the contraction theory is briefly introduced. Different from the commonly used Lyapunov method, the contraction theory uses virtual displacement to verify the stability of the control system in the design and stability analysis of the control system, which avoids the hindrance caused by the lack of clear equilibrium point information. As a result, it is easier to prove the stability of the control system. Then, the kinematics and dynamics model of the unmanned underwater vehicle is introduced, the ideal controller is designed based on the contraction theory, and the stability of the controller is proved. Finally, the trajectory tracking control simulation of the unmanned underwater vehicle is carried out, and the simulation results verify the effectiveness of the proposed control algorithm.
2022,44(2): 111-116 收稿日期:2021-04-07
DOI:10.3404/j.issn.1672-7649.2022.02.020
分类号:U661.33+1
基金项目:装备发展部预研项目(6140241010103)
作者简介:王嘉玺(1997-),男,硕士研究生,研究方向为水下机器人参数辨识及运动控制
参考文献:
[1] 骆晓玲, 王子含. 基于模糊PID的水下航行器运动控制研究[J]. 电子测量技术, 2020, 43(19): 53–56
[2] 王芳荣, 阚如文, 王昕, 等. 无人水下航行器PID神经网络解耦控制[J]. 吉林大学学报(工学版), 2012, 42(S1): 387–391
[3] DU Jia-lu, HU Xin, MIROSLAV K, et al. Robust dynamic positioning of ships with disturbances under input saturation[J]. Automatica, 2016, 73(6): 207–214
[4] ANTONELLI G, CACCAVALE F, CHIAVERINI S, et al. A novel adaptive control law for underwater vehicles[J]. IEEE Transactions on Control Systems Technology, 2003, 11(2): 221–232
[5] LI Ji-Hong, LEE Pan-Mook. Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle[J]. Ocean Engineering, 2005, 32: 2165–2181
[6] 蒋沛立. 欠驱动AUV水平面轨迹跟踪控制算法研究[D]. 成都: 电子科技大学, 2020.
[7] 曹晓明. 海流扰动下无人水下航行器的动态面反演轨迹跟踪控制[J/OL]. 系统工程与电子技术: 1−11[2021−03−12]. http://kns.cnki.net/kcms/detail/11.2422.TN.20210112.1308.002.html.
[8] 方勇纯. 非线性控制理论[M]. 北京: 清华大学出版社, 2009.
[9] LOHMILLERW, SLOTINE J J E. On contraction analysis for nonlinear systems[J]. Automatica, 1998, 34(6): 683–696
[10] LOHMILLER W, SLOTINE J J E. On the metric observers for nonlinear systems[C] //Proceeding of the 1996 IEEE International Conference on Control Applications, Dearborn, 1996: 320-326.
[11] AGHANNAN N, ROUCHON P. An intrinsic observer for a class of lagrangian systems[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 936–945
[12] LOHMILLERW, SLOTINE J J E. Control system design for mechanical systems using contraction theory[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 984–989
[13] JOUFFROY J, SLOTINE J J E. Methodological remarks on contraction theory[C] //Proceedings of 43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island, Bahamas, 2004: 2537−2543.
[14] MAJEED MOHAMED, SWAROOP S. Incremental input to state stability of underwater vehicle[J/OL]. IFAC-PapersOnLine, 2016, 49(1): 41−46.
[15] MOHAMED M, Rong Su. Contraction based tracking control of autonomous underwater vehicle[J/OL]. IFAC-PapersOnLine, 2017, 50 (1): 2665−2670.
[16] 张果, 卢天秀, 曹立佳, 等. 四旋翼飞行器自适应收缩反步控制[J]. 电光与控制, 2020, 27(1): 26–31,41
[17] 张玉芳, 刘长德. 基于收缩理论的船舶动力定位自适应反步控制[J]. 中国造船, 2020, 61(04): 85–94
[18] MOHAMED M, RONG Su. Contraction based tracking control of autonomous underwater vehicle[C]// International Federation of Automatic Control, 2017: 2665−2670.
[19] WEI Wang, SLOTINE J J E. On partial contraction analysis for coupled nonlinear oscillators[J]. Biological Cybernetics, 2005, 92(1): 38–53
[20] Soon-Jo Chung, SLOTINE J J E. Cooperative robot control and concurrent synchronization of lagrangian systems[J]. IEEE Transactions on Robotics, 2009, 25(3): 686–700
[21] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011.
[22] PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. Massachusetts Institute of Technology, 2001.