针对水下无人航行器路径规划需要提前获得海图以得到全局障碍物信息,难以做到未知环境下实时规划路径的问题,提出一种对探测空间进行采样并判断采样点是否具有障碍,最终将探测到的障碍结果加权赋值给A*算法待扩展点的方法,实现了探测与路径规划同步进行,同时考虑到航行器的运动学约束,将A*算法的搜索域修正为圆域并且仅搜索在运动学约束下可达的区域,避免路径规划出现折线段。最终仿真结果表明,该方法在未知海域中,可以实现实时路径规划,规避由探测系统检测到的障碍物并最终抵达目标点,且运算消耗小,速度快,满足实时性要求。
For unmanned undersea vehicle path planning, the global obstacle information from the chart in advance is necessary, so it is difficult to achieve real-time path planning in the unknown environment. To solve this problem, a method for sampling the detection space and judging whether the sampling points have obstacles, and finally weighting the detected obstacle results to the A* algorithm points to be extended is proposed,which synchronizes detection and path planning. At the same time, considering the kinematic constraints of UUV, the search domain of the algorithm is corrected to a circular domain and only the reachable region under kinematic constraints is searched, which avoids the occurrence of a broken line segment in the path planning. The final simulation results show that the method can realize real-time path planning in the unknown sea area, avoid obstacles detected by the detection system in real time and reach the target point. The calculation consumes little, the speed is fast, and it meets the real-time requirements.
2022,44(2): 117-120 收稿日期:2021-05-08
DOI:10.3404/j.issn.1672-7649.2022.02.021
分类号:TP13
作者简介:赵旭(1992-),男,硕士,工程师,主要从事水下航行器控制与决策技术研究
参考文献:
[1] 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1): 44–51
PAN Guang, SONG Bao-wei, HUANG Qiao-gao, et al. Development of key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea System, 2017, 25(1): 44–51
[2] 马焱, 肖玉杰, 陈轶, 等. 基于改进烟花-蚁群算法的海流环境下水下无人潜航器的避障路径规划[J]. 导航与控制, 2019, 18(1): 51–59
MA Yan, XIAO Yu-jie, CHEN Yi, et al. Obstacle avoidance path planning of unmanned underwater vehicle in ocean current environment based on improved fireworks-ant colony algorithm[J]. Navigation and Control, 2019, 18(1): 51–59
[3] GONZALEZ D, PEREZ J, MILANES V, et al. A review of motion planning techniques for automated vehicles[C]// IEEE Transactions on Intelligent Transportation System, 2016, 17(4): 1135-1145.
[4] 谭海燕, 张莉, 韩仪洒, 等. 基于改进A*算法的无人机航线规划[J/OL]. 飞行力学.https://doi.org/10.13645/j.cnki.f.d.20190529.001.
TAN Hai-yan, ZHANG Li, HAN Yi-sa, et al. UAV route planning based on improved A* Algorithm [J/OL]. Flight Dynamics, https://doi.org/10.13645/j.cnki.f.d.20190529.001.
[5] KARAMAN S, WALTER M. R, PEREZ A, et al. Anytime motion planning using the RRT*[C]//IEEE ICRA, 2011: 1478-1483.
[6] LEKKAS A M, FOSSEN T I. Integral LOS path following for curved paths based on a monotone cubic hermit spline parametrization[J]. IEEE Transaction on Control Systems Technology, 2014, 22(6): 2287–2301
[7] 谢静. 基于蚁群算法的水下航行器航路规划[D]. 武汉: 华中科技大学, 2016,
[8] 崔保华. 未知环境下无人水下航行器避碰行为决策方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[9] 张帅, 李学仁, 张鹏, 等. 基于改进A*算法的无人机航迹规划[J]. 飞行力学, 2016, 34(5): 39–43
ZHANG Shuai, LI Xue-ren, ZHANG Peng, et al. UAV path planning based on improved A* algorithm[J]. Flight Dynamics, 2016, 34(5): 39–43