设计一种新型固体氧化物燃料电池与微型燃气轮机底层联合循环发电系统结构(SOFC-MGT底层联合循环2),基于Matlab/Simulink软件建立了SOFC-MGT底层联合循环2的仿真模型,并与传统的SOFC-MGT底层联合循环1的系统性能进行对比分析。结果表明,SOFC-MGT底层联合循环2的电堆输出功率要低于底层联合循环1,最大可低于3.8%,SOFC-MGT底层联合循环2的系统发电效率要高于底层联合循环1,最大可高于19.1%。
A new type of solid oxide fuel cell and micro gas turbine bottom-level combined cycle power generation system (SOFC-MGT bottom-level combined cycle 2) is designed. Based on Matlab/Simulink software, a simulation model of SOFC-MGT bottom-level combined cycle 2 is established. The system performance of the SOFC-MGT bottom-level combined cycle 1 of SOFC-MGT was compared and analyzed. The research results showed that the stack output power of SOFC-MGT bottom-level combined cycle 2 is lower than that of bottom-level combined cycle 1, and the maximum can be less than 3.8%. The power generation efficiency of the bottom-level combined cycle 2 system is higher than that of the bottom-level combined cycle 1, and the maximum can be higher than 19.1%.
2022,44(2): 151-155 收稿日期:2020-12-18
DOI:10.3404/j.issn.1672-7649.2022.02.027
分类号:TM911;TK472
基金项目:国家部委基金资助项目(18-16-13-ZT-001-001-04,17-H863-05-ZT-002-041-01)
作者简介:乔润鹏(1993-),男,硕士研究生,研究方向为动力机械及热力系统的设计、仿真与优化
参考文献:
[1] PENG Y, LUO Z Y, WANG Q H, et al. Life cycle assessment of trans-formation from a sub-critical power plant into a polygeneration plant[J]. Energy Convers Manag, 2019, 198: 111801.
[2] JANA K, RAY A, MAJOUMERD M M, et al. Poly-generation as a future sustainable energy solution-A comprehensive review[J]. Appl Energy, 2017, 202: 88e111.
[3] MURUGAN S, HORGAK B. Tri and polygeneration systems-A review[J]. Renew Sustain Energy Rev, 2016, 60: 1032e51.
[4] AZIZI M A, BROUWER J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: system design and analysis, transient operation, controls and opti-mization[J]. Appl Energy 2018, 215: 237e89.
[5] CAMBLONG H, BAUDOIN S, VECHIU I, et al. Design of a SOFC/GT/SCs hybrid power system to supply a rural isolated microgrid[J]. Energy Conversion and Management, 2016, 117(1): 12–20
[6] 吕小静, 陆超豪, 耿孝儒, 等. 水蒸气对IT-SOFC/GT混合动力系统性能的影响[J]. 工程热物理学报, 2016, 37(4): 705–710
LV Xiao-jing, LU Chao-hao, GENG Xiao-ru, et al. The effect of water vapor on the performance of IT-SOFC/GT hybrid power system[J]. Journal of Engineering Thermophysics, 2016, 37(4): 705–710
[7] 詹海洋, 梁前超, 朱润凯, 等. 燃料电池-燃气轮机底层循环性能研究[J]. 舰船科学技术, 2018, 40(15): 76–80
ZHAN Hai-yang, LIANG Qian-chao, ZHU Run-kai, et al. Study on the performance of fuel cell-gas turbine bottom cycle[J]. Journal of Ship Science and Technology, 2018, 40(15): 76–80
[8] 朱润凯, 梁前超, 闫东, 等. 固体氧化物燃料电池与微型燃气轮机联合发电建模仿真研究[J]. 舰船科学技术, 2017, 39(7): 95–99
ZHU Run-kai, LIANG Qian-chao, YAN Dong, et al. Study on modeling and simulation of combined power generation of solid oxide fuel cell and micro gas turbine[J]. Journal of Ship Science and Technology, 2017, 39(7): 95–99
[9] YOU H, HAN J, LIU Y, et al. 4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam jector refrigerator[J]. Energy, 2020, 06: 118–122
[10] SAISIRIRAT P. The solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid system numerical model[J]. Energy Procedia, 2015, 79: 845–850
[11] FONTELL E, KIVISAARI T, CHRISTIANSEN N, et al. Conceptual study of a 250 kW planar SOFC system for CHP application[J]. Journal of Power Sources, 2004.
[12] LU Y, SCHAEFER L. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas[J]. Journal of Power Sources, 2004, 135(1–2): 184–191
[13] BOVE R, LUNGHI P, SAMMES N M. SOFC mathematic model for systems simulations. Part one: From a micro-detailed to macro-black-box model[J]. International Journal of Hydrogen Energy, 2005, 30(2): 181–187
[14] COSTAMAGNA P, MAGISTRI L, MASSARDO A F. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine[J]. Journal of Power Sources, 2001, 96(2): 352–368