以水翼复合小水线面三体无人艇为研究对象,进行了在3种吃水、5个不同初始横摇角下横摇衰减试验。通过MTI惯性测量仪测得横摇角变化数据,得到角速度衰减情况。同时建立4种横摇衰减运动模式的系统辨识运动方程,以系统辨识理论和遗传优化算法为基础改编系统辨识软件。通过辨识计算得到方程4目标函数最小,其拟合度最佳。所得角速度试验值和拟合值相对误差控制在5%范围内,进一步验证了辨识软件的可靠性。分析在辨识方程4各力矩系数随初始横摇角及吃水的变化规律,选取2个初始横摇角和同吨位小水线面双体进行对比分析,得出小水线面三体横摇衰减周期大,角速度峰值较小,表明小水线面三体加装水翼具有较好的减摇效果。
In this paper, the hydrofoil composite small waterplane area trimaran USV as the research object, and the roll attenuation test is carried out at three draughts and five different initial roll angles. The roll angle change data is measured by MTI inertial measuring instrument, and the angular velocity attenuation is obtained. At the same time, the system identification motion equations of four roll attenuation motion modes are established, and the system identification software is adapted based on the system identification theory and genetic optimization algorithm. Through identification and calculation, the objective function of equation 4 is the smallest and the fit is the best; the relative error between the experimental value and the fitting value of the obtained angular velocity is controlled within 5%, which further verifies the reliability of the identification software. Analyzed the variation law of each moment coefficient with the initial roll angle and draft in the identification equation 4. The two initial roll angles and the same tonnage small waterplane double body were selected for comparative analysis, and the small waterplane three body was obtained. The roll attenuation period is large and the angular velocity peak is small, indicating that the small waterplane trimaran USV add hydrofoil has a better anti-rolling effect.
2022,44(4): 54-59 收稿日期:2020-10-09
DOI:10.3404/j.issn.1672-7649.2022.04.012
分类号:U661.3
基金项目:国家自然科学基金资助项目(51379094);江苏省研究生实践创新计划(SJCX20-1484)
作者简介:蔡文鹏(1995 ? ),男,硕士研究生,研究方向为船舶与海洋结构物流体力学性能
参考文献:
[1] 马雪泉, 季盛, 文逸彦, 等. 船舶横摇运动模式辨识仿真[J]. 上海船舶运输科学研究所学报, 2016, 39(2): 1–4
[2] 李骏. 一种水面无人艇运动模式辨识系统的研究[D]. 镇江: 江苏科技大学, 2016.
[3] 杨旺林, 徐海通, 杨松林, 等. 无人滑行艇横摇运动模式实验分析[J]. 舰船科学技术, 2014, 36(4): 27–30+35
[4] 夏志平, 文逸彦, 杨松林, 等. 新型三体船横摇运动模式分析[J]. 舰船科学技术, 2014, 36(2): 33–36+59
[5] 张晗, 马建红. 基于遗传算法的纵摇运动模式识别模型分析[J]. 舰船科学技术, 2015, 37(11): 35–38
[6] 余永强, 杨松林, 程占元. 小水线面复合单体无人艇纵摇运动模式研究[J]. 舰船科学技术, 2019, 41(23): 69–73
[7] 钱富才, 黄姣茹, 秦新强. 基于鲁棒优化的系统辨识算法研究[J]. 自动化学报, 2014, 40(5): 988–993
[8] 丁锋. 系统辨识算法的复杂性、收敛性及计算效率研究[J]. 控制与决策, 2016, 31(10): 1729–1741
[9] 孙晓界, 石林龙, 范云生, 等. 一种无人水面艇运动模型参数在线辨识方法[J]. 中国航海, 2016, 39(1): 39–43+78
[10] 刘福伟, 徐海通, 杨松林. 一型两栖无人概念艇的横摇特性初步研究[J]. 中国舰船研究, 2014, 9(1): 46–51
[11] 孙小帅, 姚朝帮, 叶青. 小水线面双体船横摇阻尼特性数值与试验研究[J]. 国防科技大学学报, 2017, 39(6): 71–78+142
[12] 姚迪, 卢晓平, 王毅. 三体船横摇模型试验及其特性分析[J]. 中国舰船研究, 2010, 5(4): 6–11+26
[13] SATHYASEELAN D, HARIHARAN G, KANNAN K. Parameter identification for nonlinear damping coefficient from large-amplitude ship roll motion using wavelets[J]. Beni-Suef University Journal of Basic and Applied Sciences, 2017, 6(2):138?144
[14] QIN Yu-xuan, GAO Sha-sha, YU Yong-qiang, et al. Research on the rolling motion mode of a SWATH-USV[J]. American Jeurnal of Mechanical and Industrial Engineering, 2018, 3(5): 91?98.