针对跨介质飞行器研究领域目前存在的任务负载小以及近水面介质属性强非线性变化导致的推力损失问题,设计了一种倾转四旋翼跨介质飞行器构型,具有较大的起飞负载,并建立了倾转四旋翼跨介质飞行器近水面静力学模型;在控制策略上,设计了水面垂直起飞流程以及切换控制策略,等效提高了跨介质飞行器近水面推重比,并进一步增强了倾转四旋翼跨介质飞行器起飞过程的稳定性,最后进行实验验证。结果表明,设计的水面垂直起飞流程及切换控制策略,可以实现大负载下倾转四旋翼跨介质飞行器的水面垂直起飞过程。
At present, there are some problems in the research of cross-domain unmanned vehicles(CUV), such as the strong nonlinear change of medium properties, and the difficulty of takeoff caused by thrust loss. Thus,a new configuration of tiltrotor cross-domain unmanned vehicle (TCUV)is proposed, and the dynamic model of vehicle near the water surface is established; Then, based on the dynamic model, the vertical take-off process on water surface is designed. The proposed process effectively improve the thrust to weight ratio near the surface of TCUV, and makes it possible for TCUV to carry out more loads. Moreover, in order to enhance the stability of the takeoff process of the vehicle, a switching control strategy are designed. Finally, vertical takeoff experiments on the surface are carried out. The successful experiments show that the vertical take-off process and switching control strategy designed in this paper is effective.
2022,44(4): 66-71 收稿日期:2021-03-19
DOI:10.3404/j.issn.1672-7649.2022.04.014
分类号:TP3-05
作者简介:聂星宇(1995-),男,硕士研究生,研究方向为跨介质飞行器运动控制
参考文献:
[1] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152–157
[2] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(1): 102–114
[3] 冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8–13
[4] ZUFFEREY R, A, et al. Consecutive aquatic jump-gliding with water-reactive fuel[J]. Science Robotics, 2019, 4(34): 7330
[5] STEWART W, WEISLER W, ANDERSON M, et al. Dynamic modeling of passively draining structures for aerial–aquatic unmanned vehicles[J]. IEEE Journal of Oceanic Engineering, 2019: 1–11
[6] PAULO DREWS J R, NETO A A, CAMPOS M F M . Hybrid unmanned aerial underwater vehicle: modeling and simulation[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2014.
[7] NETO A A, MOZELLI L A, DREWS-JR P L J, et al. Attitude control for an hybrid unmanned aerial underwater vehicle: a robust switched strategy with global stability[C]//IEEE International Conference on Robotics & Automation. IEEE, 2015.
[8] MAIA M, SONI P, DIEZ F. Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition[J]. Computer Science, 2015.
[9] MERCADO RAVELL D, MAIA M, DIEZ F. Modeling and control of unmanned aerial/underwater vehicles using hybrid control[J]. Control Engineering Practice, 2018, 76(7): 112–122
[10] Alzu'Bi H, MANSOUR L, RAWASHDEH O. Loon Copter: Implementation of a hybrid unmanned aquatic-aerial quadcopter with active buoyancy control[J]. Journal of Robotic Systems, 2018, 35(5): 764–778
[11] 颜奇民, 胡俊华, 陈国明, 等. 双层四旋翼跨介质航行器水空跨越建模与控制[J]. 飞行力学, 2020, 38(5): 50−56.
[12] 郜天柱, 胡志强, 杨翊, 等. 水空两栖涵道风扇推进器推力理论分析及实验验证[J]. 机器人, 2019, 41(2): 222–231
[13] 全权. 多旋翼飞行器设计与控制[M]. 北京: 电子工业出版社, 2018.
[14] LU D, XIONG C, ZENG Z, et al. A multimodal aerial underwater vehicle with extended endurance and capabilities[C]//2019 International Conference on Robotics and Automation (ICRA). School of Oceanography, Shanghai Jiao Tong University (SJTU), Shanghai China, 2019.