随着航运业限排法规日益严格,燃料电池动力船舶成为各航运大国的研究热点。燃料电池主要以氢作为燃料,氢易燃易爆,如果在船上发生事故,又具有救援难度大,事故后果严重等特点。氢安全问题是燃料电池动力船舶商业化应用前首先要解决的问题。阐述氢能安全重点研究内容及研究现状,进而对在燃料电池船舶上应用氢能的安全性进行探讨,展望了氢能在船舶上的应用前景。
With the increasing strictness of emission limit regulations in the shipping industry, fuel cell ships have become a hot topic in various countries. Fuel cells run mainly on hydrogen. Hydrogen is inflammable and explosive, and if an accident happens on board, it is difficult to perform a rescue and may cause serious consequences. Hydrogen safety has become the first problem to be solved before the commercialization of fuel cell ship. This paper introduces the key research contents and status of hydrogen energy safety, discusses the safety of hydrogen energy applied in ships, and forecasts the application prospect of hydrogen energy in ships.
2022,44(4): 91-96 收稿日期:2021-01-18
DOI:10.3404/j.issn.1672-7649.2022.04.019
分类号:U66
基金项目:国家自然科学基金资助项目(51779025)
作者简介:周洋(1997-),男,硕士研究生,研究方向为氢气安全性
参考文献:
[1] 包甜甜, 连峰, 杨忠振. 水上运输之航运管理研究现状综述[J/OL]. 交通运输工程学报, 1−17[2020-08-07]. http://kns.cnki.net/kcms/detail/61.1369.U.20200806.1637.004.html.
[2] LOKUKALUGE P. P, BRAGE Mo Emission control based energy efficiency measures in ship operations[J]. Applied Ocean Research, 2016: 60
[3] 樊志远, 江文成. 船舶低碳技术未来发展重点方向[J]. 中国船检, 2019(7): 70–73
[4] RIVAROLO M., RATTAZZI D., LAMBERTI T., et al. Clean energy production by PEM fuel cells on tourist ships: A time-dependent analysis[J]. International Journal of Hydrogen Energy, 2020(prepublish).
[5] SCHNEIDER J., DIRK S., STOLTEN D., Zemship[C]//18th World Hydrogen Energy Conference, 2010: 16−21.
[6] VOGLER F. WüRSIG G. Fuel cells in maritime applications challenges, chances and experiences.
[7] MCCONNELL V P. Now, voyager? the increasing marine use of fuel cells[J]. Fuel Cells Bull. 2010, (5) 12−17.
[8] PRATT JW, KLEBANOFF LE. Feasibility of the SF-BREEZE: a zero-emission, hydrogen fuel cell, high-speed passenger ferry[EB/OL]. Albuquerque, US: Sandia National Laboratories, 2016[2018-01-09].
[9] LVAN B, GODJEVAC M., VISSER K., et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016: 327
[10] 张城兴, 付玉生. 氢燃料电池汽车车载用氢安全问题分析及对策研究[J]. 河南科技, 2020(7): 139–141
[11] 冯文, 王淑娟, 倪维斗, 等. 氢能的安全性和燃料电池汽车的氢安全问题[J]. 太阳能学报, 2003(5): 677–682
[12] 郑津洋, 张俊峰, 陈霖新, 等. 氢安全研究现状[J]. 安全与环境学报, 2016, 16(6): 144–152
[13] INMAN J A, DANEHY P M, NOWAK R J, et al. Fluorescence imaging study of impinging underexpanded jets[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
[14] LI Feng, YUAN Yupeng, YAN Xinping, et al. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship[J]. Renewable and Sustainable Energy Reviews, 2018: 97
[15] MALAKHOV A A, AVDEENKOV A V, DU TOIT M H, et al. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation[J]. International Journal of Hydrogen Energy, 2020(prepublish).
[16] PITTS W M, YANG J C, FERNANDEZ M G. Helium dispersion following release in a ¼-scale two-car residential garage[J]. International Journal of Hydrogen Energy, 2012, 37: 5286−5298.
[17] HE Jia-qing, ERDEM K, WANG Liang-zhu, et al. Assessment of similarity relations using helium for prediction of hydrogen dispersion and safety in an enclosure[J]. International Journal of Hydrogen Energy, 2016, 41(34).
[18] WITCOFSKIRD, CHIRIVELLAJE. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425–435
[19] HEDLEY D, HAWKSWORTH S J, RATTIGAN W, et al. Large scale passive ventilation trials of hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(35): 25–30
[20] 李渊, 陈景鹏, 崔村燕, 等. 液氢泄漏扩散规律研究现状[J]. 装备学院学报, 2014, 25(4): 75–78
[21] 陈波. 奥氏体不锈钢氢致脆断的探讨[J]. 冶金与材料, 2020, 40(3): 165–167
[22] 翟建明, 徐彤, 寿比南, 等. 高压临氢环境中材料氢脆测试方法讨论[J]. 中国特种设备安全, 2017, 33(10): 1–6
[23] ISO 11114-4: 2017 Transportable gas cylinders—Compatibility of cylinder and valve materials with gas contents-Part 4: Test methods for selecting steels resistant to hydrogen embrittlement[S].
[24] ASME-BPVC-VIII-3: 2017 Special requirements for ves- sels in hydrogen service[S].
[25] ASTM G142-98 (Reapproved 2016) Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both[S].
[26] GB/T 34542.2-2018 Storage and transportation system for gaseous hydrogen—Part 2: Test methods for evaluating metallic material compatibility in hydrogen atmosphere(氢气储存输送系统—第2部分: 金属材料与氢环境相容性试验方法)[S].
[27] 张俊峰, 欧可升, 郑津洋, 等. 我国首部氢系统安全国家标准简介[J]. 化工机械, 2015, 42(2): 157–161
[28] MOLKOV V, SAFFERS J. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8141–8158
[29] HOUF W G, EVANS G H, SCHEFER R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(14).
[30] VESER A, KUZNETSOV M, FAST G, et al. The structure and flame propagation regimes in turbulent hydrogen jets[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2351−2359.
[31] WANG Zhilei, ZHANG Han, PAN Xuhai, et al. Experimental and numerical study on the high-pressure hydrogen jet and explosion induced by sudden released into the air through tubes[J]. International Journal of Hydrogen Energy, 2020, 45(7).
[32] 汪志雷, 潘旭海, 蒋军成. 高压氢气泄漏自燃研究进展[J]. 南京工业大学学报(自然科学版), 2019, 41(5): 656–663
[33] 张剑光. 氢能产业发展展望—制氢与氢能储运[J]. 化工设计, 2019, 29(4): 3–6+26+1
[34] 刘海利. 燃料电池汽车用氢的制取及储存技术的现状与发展趋势[J]. 石油库与加油站, 2019, 28(5): 24–27+4-5
[35] HELMOLT RV, EBERLE U. Compressed and liquid hydrogen for fuel cell vehicles[M]. New York: Springer-Verlag, 2014: 245−253.
[36] 张志芸, 张国强, 刘艳秋, 等. 车载储氢技术研究现状及发展方向[J]. 油气储运, 2018, 37(11): 1207–1212
[37] 郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6): 21–29
[38] 沈现青. 氢燃料电池车技术解析[J]. 汽车维护与修理, 2015(2): 84–87
[39] 刘艳秋, 张志芸, 张晓瑞, 等. 氢燃料电池汽车氢系统安全防控分析[J]. 客车技术与研究, 2017, 39(6): 13–16
[40] 徐钟平, 周敏莉, 虞利强, 等. 燃料电池汽车及氢能源的发展现状与安全对策[J]. 消防科学与技术, 2010, 29(11): 1019–1021
[41] 刘京京, 陈华强, 周伟, 等. 燃料电池汽车氢气加注控制策略分析[J]. 能源与节能, 2017(10): 80–81+113
[42] 叶川, 马天才, 陈翌, 等. 车载供氢系统控制器开发[J]. 汽车技术, 2019(2): 48–52
[43] 李峰. 燃料电池客船氢气系统设计与氢泄漏数值模拟研究[D]. 武汉: 武汉理工大学, 2018.
[44] 陈笃廉. 燃料电池客车氢系统与动力电池安全防护设计[J]. 机电技术, 2017(2): 59–62
[45] 张剑. 插电式燃料电池乘用车整车开发[M].2018中国汽车工程学会年会论文集, 北京: 机械工业出版社, 2018.
[46] 何健, 万党水. 燃料电池轿车氢瓶保护系统设计分析研究[J]. 上海汽车, 2008(7): 19–21+28
[47] 姜国峰, 成波, 金哲, 等. 燃料电池客车氢系统碰撞安全性仿真分析与评价[J]. 汽车工程, 2010, 32(9): 774–777+802