潜水器耐压壳结构为人员和设备提供安全可靠的工作环境,决定潜水器的潜深和容重比等关键性能指标,是潜水器的核心部件。除传统金属合金外,一些具有高强、轻质性能的非金属材料,如纤维增强复合材料、陶瓷、玻璃等也展现出了巨大的应用前景,成为潜水器提高性能的可靠技术途径。在总结潜水器耐压结构选材应用的基础上,分析不同材料在力学性能、耐海洋环境性能等方面的优劣,为耐压壳结构材料的选择提供参考,并针对现阶段存在的问题展望了未来进一步研究的方向。
The pressure shell structure of submersible provides a safe and reliable working environment for personnel and equipment. It is the core component of submersible and determines the key performance indicators such as diving depth and the ratio of volume to weight. In addition to the traditional metal alloys, some non-metallic materials with high strength and lightweight properties, such as fiber reinforced composite materials, ceramics, glass, etc., have also shown great application prospects and become a reliable technical approach to improve the performance of submersibles. On the basis of summarizing the selection and application of various materials in pressure hulls of submersibles, the advantages and disadvantages of different materials in terms of mechanical properties and marine environment resistance are analyzed, providing a reference for the selection of materials, and prospecting the direction of further research in view of the existing problems at present.
2022,44(5): 1-6 收稿日期:2021-09-14
DOI:10.3404/j.issn.1672-7649.2022.05.001
分类号:U668
作者简介:张颖(1997-),女,研究生,研究方向为复合材料,耐压结构等
参考文献:
[1] 罗珊, 李永胜, 王纬波. 非金属潜水器耐压壳发展概况及展望[J]. 中国舰船研究, 2020, 15(4): 9-18
[2] TURNER S E. Underwater implosion of glass spheres[J]. The Journal of The Acoustical Society of America, 2007, 121(2): 844-852
[3] 李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210-221
[4] SMITH C S. Design of marine structures in composite -materials[M]. Elsevier Applied Science Ltd, LONDON. 1990.
[5] Lopatin A. V, MOROZOV E V Buckling of composite cylindrical shells with rigid end disks under hydrostatic pressure[J]. Composite Structures, 2017, 173: 136-143
[6] VOCE S J. Buckling under external hydrostatic pressure of orthotropic cylindrical shells with evenly spaced equal strength circular ring frames[J]. Ocean Engineering, 1969, 1(5): 521-534.
[7] LOPATIN A V, MOROZOV E V. Buckling of composite cylindrical shells with rigid end disks under hydrostatic pressure[J]. Composite Structures, 2017: 136-143
[8] 沈克纯, 潘光, 姜军, 等. 静水压力下纤维缠绕圆柱壳体的稳定性分析[J]. 西北工业大学学报, 2018, 36(5): 839-847
[9] REDDY A C. influence of stiffeners on strength of e-glass/epoxy composite submergible hull subjected to shock pressure load using finite element method[J]. Materials Today: Proceedings, 2017, 4(8): 7507-7518
[10] 段继周, 马士德, 黄彦良. 区域性海底沉积物腐蚀研究进展[J]. 腐蚀科学与防护技术, 2001, 13(1): 37
[11] 郭为民, 孙明先, 邱日, 等. 材料深海自然环境腐蚀实验研究进展[J]. 腐蚀科学与防护技术, 2017, 29(3): 313-317
[12] SAWANT S S, WAGH A B. Corrosion behaviour of metals and alloys in the waters of the Arabian Sea[J]. Corros. Prev. Control, 1990, 36: 154
[13] SAWANT S S, VENKAT K, WAGH A B. Corrosion of metals and alloys in the coastal and deep waters of the Arabian sea and the bay of Bengal[J]. Indian J. Technol., 1993, 31: 862
[14] VENKATESAN R, VENKATASAMY M A, BHASKARAN T A, et al. Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37: 257
[15] VENKATESAN R, DWARAKADASA E S, RAVINDRAN M, et al. A deepsea corrosion study of titanium and Ti6Al4V alloy[J]. Corros. Prev. Control, 2004, 51: 98
[16] VENKATESAN R, MUTHIAH M A, MURUGESH P. Unusual corrosion of instruments deployed in the deep sea for Indian tsunami early warning system[J]. Mar. Technol. Soc. J., 2014, 48: 6
[17] 侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82
HOU J, GUO W M, Deng C L. Influences of deepsea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
[18] 周建龙, 李晓刚, 程学群, 等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22: 47
ZHOU J L, LI X G, CHENG X Q, et al. Research progress on corrosion of metallic materials in deep sea environment[J]. Corros. Sci. Prot. Technol., 2010, 22: 47
[19] 曹攀, 周婷婷, 白秀琴, 等. 深海环境中的材料腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20
[20] CASTANEDA H, BENETTON X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169
[21] RAO T S, KORA A J, ANUPKUMAR B, et al. Pitting corrosion of titanium by a fresh waterstrain of sulphate reducing baeteria (Desulfovibrio vulgaris)[J]. Corros. Sci., 2005, 47: 1071
[22] SHALABY H M, HASAN A A, SABTI F A. Effects of inorganic sulphide and ammonia on microbial corrosion behavior of 70Cu-30Ni alloy in seawater[J]. Br. Corros. J., 1999, 34(4): 292
[23] (法)戴维斯, (美)拉贾帕克萨著. 船舶与海洋工程复合材料耐久性[M]. 北京: 化学工业出版社. 2015.
[24] 王汝敏, 郑水蓉, 郑亚萍主编. 聚合物基复合材料[M]. 北京: 科学出版社. 2011.