为了提高声学覆盖层的仿真精度,改进原有的计算参数模型。基于集总参数法和传递矩阵法,提出声学覆盖层的一维等效模型。结合有限元法对声学覆盖层计算,计算结果表明,阻尼对吸声效率有显著作用,不同类型阻尼对吸声作用不同,结构阻尼主要影响低频区,粘性阻尼主要影响高频段。根据橡胶材料特性,结合数值计算的结果,提出一种计权的复合阻尼模型,并通过声管实验验证了有效性。提高了声学覆盖层的仿真精度,对声学覆盖层设计有重要意义。
In order to improve the simulation accuracy of the acoustic coating, the original calculation parameter model is improved. Based on the lumped parameter method and the transfer matrix method, a one-dimensional equivalent model of the acoustic coating is proposed. Combining the calculation of the acoustic coating with the finite element method, the calculation results show that damping has a significant effect on the sound absorption efficiency. Different types of damping have different effects on sound absorption. Structural damping mainly affects the low frequency range, and viscous damping mainly affects the high frequency range. According to the characteristics of rubber materials and the results of numerical calculations, a weighted composite damping model is proposed, and the effectiveness is verified by acoustic tube experiments. The simulation accuracy of the acoustic coating is improved, which is of great significance to the design of the acoustic coating.
2022,44(5): 32-36 收稿日期:2021-01-28
DOI:10.3404/j.issn.1672-7649.2022.05.007
分类号:TB564
作者简介:张帆(1997-),男,硕士研究生,研究方向为振动与噪声
参考文献:
[1] CORSARO R D, SPERLING L H. Sound and vibration damping with polymers[J]. Mechanisms of Sound Attenuation in Materials, 1990; 424: 167?207.
[2] H O. Resonant sound absorbers[J]. Technical Aspects of Sound, 1957, VolⅡ.
[3] MEYER E, BRENDEL K, TAMM K. Pulsation oscillations of cavities in rubber[J]. The Journal of the Acoustical Society of America, 1958, 30: 1116?1124.
[4] GREENSPON JE. Vibrations of thick cylindrical shells[J]. The Journal of the Acoustical Society of America, 1960, 32: 612?613.
[5] GAUNAURD G. One-dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities[J]. The Journal of the Acoustical Society of America, 1977, 62: 298?307.
[6] 朱蓓丽, 任克明. 等效参数法研究带圆柱通道橡胶体的声学性能[J]. 上海交通大学学报, 1997: 22-27.
[7] 汤渭霖, 何世平, 范军. 含圆柱形空腔吸声覆盖层的二维理论[J]. 声学学报, 2005: 289-295.
[8] HLADKY‐HENNION AC, DECARPIGNY JN. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings[J]. J Acoust Soc Am, 1991, 90: 3356?3367.
[9] PANIGRAHI SN, JOG CS, MUNJAL ML. Multi-focus design of underwater noise control linings based on finite element analysis[J]. Applied Acoustics, 2008, 69: 1141?1153.
[10] SOHRABI SH, KETABDARI MJ, PHAM D. Numerical simulation of a viscoelastic sound absorbent coating with a doubly periodic array of cavities[J]. Cogent Engineering, 2018, 5.
[11] SHARMA GS, SKVORTSOV A, MACGILLIVRAY I, et al. Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing[J]. J Acoust Soc Am, 2017, 141: 4694.
[12] WANG S, HU B, DU Y. Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium[J]. Applied Acoustics, 2020, 170.
[13] JIN G, SHI K, YE T, et al. Sound absorption behaviors of metamaterials with periodic multi-resonator and voids in water[J]. Applied Acoustics, 2020, 166.
[14] 李海声, 彭东立. 狭缝空腔间粘弹性体中弹性波传播特性的研究[J]. 声学技术, 2011, 30: 56?61.
[15] 朱蓓丽, 黄修长. 潜艇隐身关键技术: 声学覆盖层的设计[M]. 上海: 上海交通大学出版社, 2012.