本文研究和建立一种包括172个组分、818步反应、适用于低温条件下的双燃料简化机理模型,用来预测双燃料发动机的燃烧和排放特性。机理模型针对点火延迟、层流火焰速度进行了验证,结果表明本文建立的简化机理模型可靠。最后,将本文简化的柴油/天然气双燃料机理模型耦合到CFD软件中,研究不同LNG替代率(0、30%、60%、90%)下双燃料发动机的燃烧特性和排放。结果表明:随着LNG替代率的增加,缸内的最高燃烧温度和最大爆发压力降低,进而减少了NOX和 SOOT的排放,但是CO和CH4的排放增多。
In this paper, we study and establish a dual-fuel simplified mechanism model suitable for low-temperature conditions, including 172 components and 818-step reactions to predict the combustion characteristics and emissions of dual-fuel engines. The final optimized mechanism model is verified for ignition delay and laminar flame velocity, and the results show that the simplified mechanism model established in this paper is reliable. Finally, the simplified diesel/natural gas dual-fuel mechanism model in this paper is coupled to CFD software to simulate and calculate the combustion characteristics and emissions of dual-fuel engines at different LNG substitution rates (0, 30%, 60%, 90%). The results show that as the LNG replacement rate increases, the maximum combustion temperature and maximum explosion pressure in the cylinder decrease, thereby reducing NOX and SOOT emissions, but CO and CH4 emissions will increase.
2022,44(5): 80-87 收稿日期:2020-10-25
DOI:10.3404/j.issn.1672-7649.2022.05.016
分类号:U464.173
作者简介:肖民(1969-),女,博士,教授,研究方向为船舶动力设备和系统设计制造及性能优化
参考文献:
[1] 汪佳丽. LNG缸内液喷对混合气形成影响的仿真研究[D]. 吉林: 吉林大学, 2011.
[2] MEYERS D P, BOURN G D, HEDRICK J C, et al. Evalu- ation of six natural gas combustion systems for LNG locomotive applications[C]// International Fuels & Lubricants Meeting & Exposition,1997.
[3] M S LOUNICI, K LOUBAR, L TARABET, et al. Towards improvement of natural gas-diesel dual fuel mode: an experimental investigation on performance and exhaust emissions[J]. Energy, 2014(64): 200-211
[4] SINGH S, KONG SC, REITZ RD, et al. Modeling and experiments of dual-fuel engine combustion and emissions[J]. SAE 2004-1-0092.
[5] AGGARWAL SK, AWOMOLO , AKBER K. Ignition char- acteristics of heptane-hydrogen and heptane-methane fuel blends at elevated pressures[J]. International Joural of Hydrogen Energy, 2011, 36(23): 15392-402.
[6] MAGHBOULI A, SHAFEE S, SARAY RK, et al. A multi-dimensional CFD-Chemical kinetics approach in dete-ction and reduction of knocking combustion in diesel-natural gas dual-fuel engines using local heat release analysis[J]. SAE International Joural of Engines, 2013, 6(2): 777-87.
[7] ZHAO W, YANG W, FAN L, et al. Development of a skeletal mechanism for heavy duty engines fuelled by diesel and natural gas[J]. Applied Thermal Engineering, 2017.
[8] YOUSEFI A, GUO H, BIROUK M. An experimental and numerical study on diesel injection split of a natural gas/diesel dual-fuel engine at a low engine load[J]. Fuel, 2018, 212.
[9] HOCKETT A, HAMPSON G, MARCHESE AJ. Development and validation of a reduced chemical kinetic mechanism for computational fluid dynamics simulations of natural gas/diesel dual-fuel engines[J]. Energy Fuels, 2016, 30(3).
[10] KUSAKA J, ITO S, MIZUSHIMA N, et al. A numerical study on combustion and exhaust gas emissions characteristics of a dual fuel natural gas engine using a multi-dimensional model combined with detailed kinetics[C]//International Spring Fuels and Lubricants Meeting and Exhibition, 2003
[11] PAN K, J S WALLACE. A low tempera- ture natural gas reaction mechanism for compression ignition engine application[J]. Combustion and Flame, 2019, 202: 334-346.
[12] HAIRUDDIN A A, YUSAF T, WANDEL A P. A review of hydrogen and natural gas addition in diesel HC-CI engines[J]. Renewable and Sustainable Energy Review, 2014, 32: 739-761.
[13] HUANG H, et al. Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction[J]. Fuel, 2019, 236: 30-42.
[14] PETERSEN E, DAVIDSON D, HANSON R. Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures[J]. Combustion and Flame, 1999, 177(1/2): 272-290.
[15] HUANG J, HILL P, BUSHE W, et al. Shock-tube study of methane ignition under engine-relevant conditions: experiments and modeling[J]. Combustion and Flame, 2004, 136(1/2): 25-42.
[16] MEHL M, PITZ W J, WESTBROOK C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 193-200
[17] CURRAN H J, GAFFURI P, PITZ W J, et al. A compreh- ensive modeling study of iso-octane oxidation[J] Combustion and flame, 2002, 129(3): 253-280.
[18] 张永鑫. 天然气/柴油反应活性控制压燃反应机理仿真研究[D]. 吉林: 吉林大学, 2016.
[19] 卢海涛, 刘富强, 等. 正十二烷高温机理简化及验证[J]. 物理化学学报, 2019, 35(5): 486-495
[20] 曹灵, 张尊华. 基于着火特性的甲烷-正庚烷混合燃料化学动力学机理简化[J]. 武汉理工大学学报, 2018, 40(2): 58-62+70
[21] 姚春德, 韩国鹏. 柴油/甲醇高温富燃动力学机理的简化[J]. 天津大学学报, 2015, 48(9): 784-790
[22] NIEMEYER K E, SUNG C J, RAJU M P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis[J]. Combustion and Flame, 2010, 157(9): 1760-1770
[23] GLARBORG P, MILLER J A, RUSCIC B, et al. Modeling nitrogen chemistry in combustion[J]. Progress in Energy and Combustion. Science. 67 (2018) 31-68 .
[24] SHEN HPS, STEINBERG J, VANDEROVER J, et al. A shock tube study of the ignition of n-heptane, n-decane, n-dodecane, and n-tetradecane at elevated pressures[J]. Energy Fuels, 2009,23(5): 1367-75.
[25] HERZLER J, JERIG L, ROTH P. Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures[J]. Proceeding of the Combustion Institute, 2005, 30(1): 1147-53.
[26] LIPZIG, NILSSON, GOEY LPHD, et al. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures[J]. Fuel, 2011, 90(8): 2773-81.
[27] ROZENCHAN G, ZHU DL, LAW CK, et al. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM[J]. Proceeding of the Combustion Institute, 2002, 29(2): 1461-70.
[28] ZHU Zhao-jun, ZHU Ji-zhen, LV De-lin, et al. Development of a new reduced diesel/natural gas mechanism for dual fuel engine combustion and emission prediction[J]. Fuel, 2019(1): 30-42