根据分析得到的舰船电子装备使用特点,创建包含定可靠度备件优化和定费用备件优化两部分的舰船电子装备备件优化模型,以可靠度与费用的比值作为目标函数,使用蚁群算法改进极限学习机求解所建模型,将极限学习机的初始权值和阈值当作蚁群算法内各蚂蚁的爬行路径节点,通过最佳路径搜索获得全局最优解,实现舰船电子装备备件优化。实验结果表明:模型求解所得结果的多样性较高,且舰船可靠度一定时,该方法的库存备件总费用始终保持最低;该方法能有效保证电子装备在整个舰船航行期间的随时可用程度。
According to the use characteristics of ship electronic equipment obtained from the analysis, a spare parts optimization model of ship electronic equipment is established, which includes two parts: fixed reliability spare parts optimization and fixed cost spare parts optimization. Taking the ratio of reliability to cost as the objective function, the ant colony algorithm is used to improve the limit learning machine to solve the model, taking the initial weight and threshold of the limit learning machine as the crawling path node of each ant in the ant colony algorithm, the global optimal solution is obtained through the optimal path search to realize the optimization of ship electronic equipment spare parts. The experimental results show that when the diversity of the results obtained from the model is high and the ship reliability is certain, the total cost of spare parts in stock is always kept at the lowest; This method can effectively ensure the availability of electronic equipment at any time during the whole ship navigation.
2022,44(5): 158-161 收稿日期:2021-10-27
DOI:10.3404/j.issn.1672-7649.2022.05.034
分类号:TP202.1
基金项目:全国高等院校计算机基础教育研究会计算机基础教育教学研究项目(2021-AFCEC-205);河南省科技攻关项目(212102310086);河南省高等职业学校青年骨干教师培养计划项目(教职成函〔2019〕326号)
作者简介:李巧君(1983?),女,硕士,副教授,研究方向为计算机应用及大数据挖掘
参考文献:
[1] 寇贞贞, 李苏剑, 顾涛, 等. 不完全维修条件下的备件多级库存优化[J]. 计算机集成制造系统, 2021, 27(6): 1749-1759
[2] 翟亚利, 张志华, 邵松世. 考虑维修因素的随舰备件配备方案研究[J]. 海军工程大学学报, 2019, 31(3): 84-88
[3] 刘琴, 申海, 朱美琳. 基于需求分布规律的石化企业备件库存优化研究[J]. 数学的实践与认识, 2020, 50(9): 116-121
[4] 张怀强, 卢远超, 王孟. 基于故障率的舰艇维修备品备件优化配置[J]. 火力与指挥控制, 2019, 44(5): 17-21
[5] 杨建华, 韩梦莹. 基于延迟时间理论的备件维修多目标优化模型[J]. 系统工程与电子技术, 2019, 41(8): 1903-1912
[6] 邵松世, 阮旻智, 张志华. 基于库存状态的备件初始配置及采购优化模型[J]. 系统仿真学报, 2020, 32(3): 509-517
[7] 王亚东, 石全, 尤志锋, 等. 基于交叉效率排序多目标进化算法的备件供应优化[J]. 兵工学报, 2020, 41(11): 2338-2346
[8] 孙珽, 徐东星, 尹勇, 等. 基于VDM与APSO优化极限学习机的船舶运动姿态预报[J]. 船舶工程, 2019, 41(11): 89-97
[9] 张大兵, 彭智力, 段江哗, 等. 基于混沌理论和改进极限学习机的船舶升沉预报[J]. 船舶力学, 2021, 25(10): 1322-1330
[10] 南敬昌, 臧净, 高明明. 改进蚁群算法的BRBP神经网络功放逆向建模方法[J]. 激光与光电子学进展, 2020, 57(1): 198-205