针对船体直翼桨区域的结构疲劳问题,基于应力叠加原理,探讨激振载荷和波浪载荷联合作用下的结构响应时域计算流程。在此基础上,提出了该区域的结构疲劳时域分析方法。通过对某船进行疲劳损伤计算,分析了激振载荷和波浪载荷对疲劳寿命的影响。结果表明,2种载荷对直翼桨区域结构疲劳损伤占比较大,其中在靠近船体中线面附近,波浪载荷对结构疲劳影响占主导地位,而主机诱导的激振载荷在基座盘面附近影响突出,达到疲劳总损伤值的50%,共振疲劳问题不容忽视。本文研究可以为船体直翼桨区域结构的疲劳设计提供参考。
Aiming at the structural fatigue problem in the region of cycloidal propeller, the calculation process of structural response in time domain under the vibration load and wave load was discussed based on the stress superposition. Furthermore, a fatigue analysis approach based on time domain was proposed. By a fatigue damage analysis for a ship, the influence of the loads on the fatigue life was compared. The results show that the both loads account for a large proportion of the structural fatigue damage. The influence of wave load on structural fatigue is dominant near the center longitudinal plane, and the influence of vibration load induced by the main engine on the base plate is prominent, reaching 50% of the total fatigue damage value, and the resonance fatigue problem cannot be ignored. The research provides a reference for the structural fatigue design of ship’s cycloidal propeller region.
2022,44(6): 34-39 收稿日期:2021-07-11
DOI:10.3404/j.issn.1672-7649.2022.06.007
分类号:U663
作者简介:王伟(1991-),男,工程师,研究方向为船体结构设计
参考文献:
[1] 黄佳林, 陈昌运. 船用直翼推进器研究[J]. 上海船舶运输科学研究所学报, 2007(2): 88–95
HUANG Jia-lin, CHEN Chang-yun. Research on marine cycloidal propeller[J]. Journal of SSSRI, 2007(2): 88–95
[2] 吴家鸣. 几种常见特殊舰船推进器的特点分析[J]. 船舶, 2012, 23(4): 1–6
WU Jia-ming. Characteristic analysis of several special propellers on ships[J]. Ship& Boat, 2012, 23(4): 1–6
[3] 万松林, 曹俊伟, 王宇等. 基于谱分析法的船舶结构疲劳强度评估[J]. 舰船科学技术, 2018, 40(17): 32–38
WAN Song-lin, CAO Jun-wei, WANG Yu, et al. Fatigue strength assessment of a certain ship structure using spectral-based approach[J]. Ship Science and Technology, 2018, 40(17): 32–38
[4] 王炜炜, 刘敬喜, 龚榆峰等. 基于谱分析法的穿浪双体船典型节点疲劳强度评估[J]. 中国造船, 2013, 54(4): 19−27.
WANG Wei-wei, LIU Jing-xi, GONG Yu-feng, et al. Assessment of fatigue strength of typical spots in wave-piercing [J]. Shipbuilding of China, 2013, 54(4): 19−27.
[5] DNVGL-CG-0129. Fatigue Assessment of Ship Structures[S]. 2015.
[6] 中国船级社. 基于谱分析的船体结构疲劳强度评估指南[S]. 北京: 人民交通出版社, 2015.
China Classification Society. Guideline for fatigue strength assessment of ship structure based on spectral method [S]. Beijing: People’s Communications Press, 2015.
[7] 骆寒冰, 徐慧, 余建星等. 舰船砰击载荷及结构动响应研究综述[J]. 船舶力学, 2010, 14(4): 439–450
LUO Han-bing, XU Hui, YU Jian-xing, et al. Review of the state of the art of dynamic responses induced by slamming loads on ship structures[J]. Journal of Ship Mechanics, 2010, 14(4): 439–450
[8] ZIEGLER L, VOORMEEREN S, SCHAFHIRTS, et al. Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions[J]. Energy Procedia, 2015, 80: 193–200
[9] 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2005.
[10] RYCHLIK I. A new definition of the rainflow cycle counting method[J]. International Journal of Fatigue 1987;9(2): 119−121.
[11] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.