针对船舶螺旋桨在航行过程中,受到周围水域复杂伴流的影响,使螺旋桨受力不均,导致螺旋桨的结构应力变形增大,进而发生螺旋桨断裂甚至失效的现象,以某散货船为例,用有限元分析方法对其进行双向流固耦合仿真。利用瞬态仿真模拟螺旋桨周围水域的流线变化,分析螺旋桨的应力与变形、振动以及模态变化,并且通过控制变量法,将有无伴流存在的分析结果进行对比,研究伴流对螺旋桨受力变形的影响程度。研究结果表明,不均匀的伴流会极大地改变螺旋桨周围水域的流线运动状态,使得其受力变形更加不均匀,增大其振动变形状态。
Due to the influence of complicated wake in the surrounding water area, the stress of the propeller is uneven, which leads to the increase of structural stress and deformation of the propeller, and then leads to the fracture and even failure of the propeller. In this paper, a bulk carrier is taken as an example to carry out two-way fluid structure coupling simulation with finite element analysis method. The streamline changes of the water area around the propeller are simulated by transient simulation, and the stress and deformation, vibration and modal changes of the propeller are analyzed. Through the control variable method, the influence of wake on propeller deformation is studied by comparing the analysis results of wake and non wake. The results show that the non-uniform wake will greatly change the streamline motion state of the water area around the propeller and make its stress deformation more uneven, it will increase its vibration deformation state.
2022,44(6): 54-59 收稿日期:2021-07-02
DOI:10.3404/j.issn.1672-7649.2022.06.011
分类号:U664.33
基金项目:船舶动力工程技术交通行业重点实验室开放基金资助项目(X20D004);武汉工程大学校基金资助项目(18QD38)
作者简介:刘世伟(1982 - ),男,副教授,研究方向为船舶动力工程技术
参考文献:
[1] 盛振邦, 刘应中. 船舶原理(下)[M]. 上海: 上海交通大学出版社, 2016: 41−45.
[2] 王文全, 马开放, 王诗洋, 等. 螺旋桨适伴流理论设计及参数优化设计[J]. 应用科技, 2019, 46(5): 1–9
[3] 侯立勋, 汪春辉, 胡安康. 对转桨适伴流设计方法研究[J]. 中国造船, 2015, 56(4): 1 – 7
[4] GAO Qiu- xin. Numerical simulation of free surface flow around ship hull[J]. Journal of Ship Mechanics. 2002, 6(3) : 1−13.
[5] 姚震球, 高慧, 杨春蕾. 基于滑移网格的带螺旋桨体尾流场数值分析方法艇[J]. 江苏科技大学学报(自然科学版), 2008, 22(2): 15–20
[6] WU Q, FENG X M, YU H, et al. Prediction of ship resistance and propulsion performance using multi-block structural grid[C]//Proceedings of Gothenburg 2010 Workshop on Numerical Ship Hydrodynamics. Gothenburg, Sweden, 2010: 483−487.
[7] MOHAMED B. Vibration and sound radiation of ship structure by propulsion system[D]. Harbin: Harbin Engineering University, 2015.
[8] 黄政, 熊鹰, 杨光. 基于ANSYS ACP的复合材料螺旋桨流固耦合计算方法[J]. 计算力学学报, 2017, 34(4): 501–506
[9] 黄鑫, 朱汉华, 安邦. 基于滑移网格的螺旋桨性能分析[J]. 舰船科学技术, 2018, 40(4): 6–11
[10] 王丹. 复合材料螺旋桨流固耦合分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[11] 齐冠鸣. 基于Ansys的水下潜体螺旋桨对环境声速场的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[12] 沈煜. 船舶尾部伴流场的数值预报及尺度效应研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[13] Ivo Senjanović, Ivica Ančić, Gojko Magazinović, et al. Validation of analytical methods for the estimation of the torsional vibrations of ship power transmission systems[J]. Ocean Engineering, 2019, 184: 107–120
[14] GUILMINEAU E, DENG G B, Leroyer A, et al . Wake simulationof a marine propeller[C]//Joint 11th World Congress on Computational Mechanics, WCCM 2014, the 5th European Conference on Computational Mechanics, ECCM 2014 and the 6th European Conference on Computational Fluid Dynamics, ECFD 2014, 2015.
[15] 刘恬. 伴流场的尺度效应研究及其短波中特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.