聚氨酯作为一种优异的材料近年来被广泛应用,利用夹层板这种特殊的结构形式,基于传统船用加筋板,通过等质量原理,设计了不同开孔形式的船用聚氨酯蜂窝板,利用声学边界元的方法对其隔声性能进行有限元仿真研究。同时分析面板厚度、夹层高度和夹芯壁厚等因素对聚氨酯蜂窝板隔声性能的影响规律,结果表明六边形孔的蜂窝板隔声性能略差,其他开孔形式对蜂窝板隔声性能的影响很小,增加面板厚度、夹层高度和夹芯壁厚在一定程度上可以提高隔声性能。通过与传统船用加筋板进行隔声性能对比,得到聚氨酯蜂窝板的隔声性能比加筋板优越的特性。
Polyurethane as an excellent material has been widely used in recent years. Based on the traditional marine stiffened panel and the principle of equal mass, different kinds of polyurethane honeycomb panels with different openings are designed in this paper. At the same time, the influence of panel thickness, sandwich height and sandwich wall thickness on the sound insulation performance of polyurethane honeycomb panel is analyzed. The results show that the sound insulation performance of honeycomb panel with hexagonal holes is slightly poor, and the effect of other openings on the sound insulation performance of honeycomb panel is very small. Increasing the thickness of panel, sandwich height and sandwich wall thickness can improve the sound insulation performance to a certain extent. Compared with the traditional marine stiffened panel, the sound insulation performance of polyurethane honeycomb panel is superior to that of stiffened panel.
2022,44(6): 60-64 收稿日期:2021-01-06
DOI:10.3404/j.issn.1672-7649.2022.06.012
分类号:U663.6
作者简介:王金友(1994-), 男,硕士研究生,研究方向为船舶结构隔声性能
参考文献:
[1] 昝彬彬. 船舶噪声等级规则对中小船企的影响及应对措施[J]. 中国水运(下半月), 2014, 14(9): 58–61
[2] 古龙, 闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019, 41(12): 1–5
[3] 李艳华, 郑超凡, 崔晓兵, 等. 船舶舱室噪声总体综合控制技术[J]. 舰船科学技术, 2015, 37(8): 85–89
[4] 窦松然, 张思维, 王桂波, 等. 舰船舱室环境噪声分析与控制[J]. 舰船科学技术, 2019, 41(6): 57–61
[5] ARUNKUMAR M P , PITCHAIMANI J , GANGADHARAN K V, et al., Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures[J]. Aerospace Science and Technology, 2016, 56: 155-167.
[6] LI X , ZHANG P , WANG Z. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis[J]. Composite Structures, 2014, 108: 1001-1008.
[7] RUZZENG M. Vibration and sound radiation of sandwich beams with honeycomb truss core[J]. Journal of Sound and Vibration, 2004, 277(4): 741-763.
[8] 辛锋先, 张钱城, 卢天健. 轻质夹层材料的制备和振动声学性能[J]. 力学进展, 2010, 40(4): 375–399
[9] 白兆宏, 尹绪超, 苏罗青, 等. 四边形蜂窝夹层板的优化设计分析[J]. 船舶, 2012, 23(2): 30–34
[10] 陈林, 李卓, 谢晓忠, 等. V型夹层板声学结构优化设计研究[J]. 船舶, 2013, 24(1): 31–35
[11] 宋超, 赵岩, 刘江涛,等. 典型激励方式对船舶结构振动声辐射的影响[J]. 舰船科学技术, 2020, 42(21): 24−29.
[12] 于辉, 白兆宏, 姚熊亮. 蜂窝夹层板的优化设计分析[J]. 中国舰船研究, 2012, 7(2): 60–64
[13] 孟晗, 辛锋先, 卢天健. 多孔纤维吸声材料填充蜂窝结构的声学性能[J]. 中国科学:物理学 力学 天文学, 2014, 44(6): 599–609
[14] ARUNKUMAR M P , JAGADEESH M , GANGADHARAN K V ,et al.. Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: effect of inherent material damping[J]. Journal of Sound and Vibration, 2016, 383: 221-232.
[15] 刘帆, 周其斗, 吕晓军. 管路敷设橡胶层对圆柱壳结构振动与声辐射的影响[J]. 舰船科学技术, 2017, 39(2): 70–74
[16] 徐秋婷, 张学飞, 李晔, 等. 发泡铝夹芯板的隔声性能及其优化[J]. 机械工程材料, 2018, 42(10): 81–86
[17] 王盛春. 蜂窝夹层结构复合材料的声振特性研究[D]. 重庆: 重庆大学, 2011.
[18] ARUNKUMAR M P , PITCHAIMANI J , GANGADHARAN K V. Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam[J]. Aerospace Science and Technology, 2018, 78: 1−11.
[19] 任树伟, 辛锋先, 卢天健. 蜂窝层芯夹层板结构振动与传声特性研究[J]. 力学学报, 2013, 45(3): 349–358
[20] 范鑫, 崔洪宇, 洪明. 基于Virtual. Lab Acoustics的蜂窝夹层板结构传声特性分析[J]. 噪声与振动控制, 2017, 37(4): 34–39
[21] 吴廷洋, 吴锦武. 蜂窝层合板结构的隔声特性研究[J]. 材料导报, 2016, 30(8): 153–157
[22] PETERS P R, Experimental study of acoustical characteristics of honeycomb sandwich structures[J]. Pro Quest Dissertations and Theses Global, 2009, 70(5): 3125−3221.