为了研究海洋核动力平台非能动余热排出换热器(PRHR HX)池沸腾换热特性,设计搭建功率比1∶50的实验装置,研究PRHR HX运行过程中池沸腾传热特性,评价传统经验关系式在预测PRHR HX池沸腾换热系数时的适用性。实验结果表明PRHR HX局部池沸腾换热不均匀,PRHR HX下部沸腾强度明显弱于上部;随着热负荷升高,池沸腾换热趋于均匀。实验数据拟合所得到的半经验换热关联式与实验结果符合良好,偏差在±9%以内。研究结果可为海洋核动力平台非能动安全系统设计提供参考。
In order to investigate the heat transfer characteristics of the marine nuclear power platform passive residual heat removal heat exchanger, an experimental platform with power ratio 1:50 was established to simulate marine nuclear power platform working conditions, and the heat transfer characteristics of the marine nuclear power platform PRHR HX was studied. The results demonstrate that the heat transfer characteristics of the PRHR HX is not uniform, the upper part of PRHR HX is more efficient in transfer heat than the lower part. With the increase of heat load, the PRHR HX heat transfer tends to be uniform. The experimental pooling boiling heat transfer coefficient was compared with calculated values of new correlations. The new correlation show a good agreement with experimental data and the relative deviation is less 9%. This paper can provide a reference for the design of floating nuclear power plant reactor safety system.
2022,44(6): 84-89 收稿日期:2022-01-23
DOI:10.3404/j.issn.1672-7649.2022.06.018
分类号:TL33
基金项目:国家重点研发计划项目(2017YEC0307800)
作者简介:李鹏拯(1995-),男,硕士研究生,研究方向为海洋核动力装置
参考文献:
[1] 孙中宁, 范广铭, 王建军. 反应堆热工水力学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017.
[2] 李佳佳, 刘峰, 赵芳. 国外海上浮动核电站的产业发展现状[J]. 船舶工程, 2017, 39(4): 7−11.
[3] 程坤, 谭思超. 海洋条件下反应堆热工水力特性研究进展 [J]. 哈尔滨工程大学学报, 2019, 40(4): 655−662.
[4] ZHANG Yuhao, Lu Daogang, Du Zheng, et al. Numerical and experimental investigation on the transient heat transfer characteristics of C-shape rod bundles used in Passive Residual Heat Remove Heat Exchangers[J]. Annals of Nuclear Energy, 2015, 83: 147–160
[5] 王开元, 曹夏昕, 李亚. 非能动余热排出换热器池沸腾换热性能研究[J]. 原子能科学技术, 2014, 48(12): 2263–2268
[6] 李亚, 曹夏昕, 王开元. RELAP5/MOD3.2竖直管束外大容积沸腾换热模型适用性分析[J]. 原子能科学技术, 2014, 48(12): 2269–2273
LI Ya, WANG Kai-yuan, CAO Xia-xin. Validation of RELAP5/MOD3.2 code for simulating pool boiling heat transfer outside vertical tube bundle[J]. Atomic Energy Science and Technology, 2014, 48(12): 2269–2273
[7] GUPTA A, KUMAR R, UMAR, V. Nucleate pool boiling heat transfer over a bundle of vertical tubes[J]. International Communications in Heat and Mass Transfer, 2010, 37(2): 178–181
[8] YONOMOTO T, KONDO M, KUKITA Y, et al. Core makeup tank behavior observed during ROSA-AP600 experiments[J]. Nuclear Technology, 1997, 119(2): 112–122
[9] YONOMOTO T, KUKITA Y, Schultz R. Heat transfer analysis of the passive residual heat removal system in ROSA/AP600 experiments[J]. Nuclear Technology, 1998, 124(1): 18–30
[10] KUTATELADZE S S. Heat transfer and hydeodynamic resistance: handbook[M]. Moscow: Energoatomizdat Publishing Hose, 1990.
[11] MIKIC B B, ROHSENOW W M. A new correlation of pool-boiling data including the effect of heating surface charccteristics[J]. Journal of Heat Transfer, 1969, 91(2): 245–250
[12] 朱光昱. 气泡微细化沸腾现象可视化实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.