在舰船前方障碍物图像识别中,传统的图像识别系统漏检概率高、检测性能较差,难以满足舰船安全航行要求。深度学习是一种智能化技术,将其应用到障碍物图像识别中可以提高图像信息筛选、计算和检测效率。本文介绍深度学习中的神经网络模型和卷积神经网络,以及深度学习在舰船前方障碍物图像识别中的检测方法。基于传统深度学习算法的不足,提出改进后的Faster R-CNN方法在障碍物图像识别中的应用,并通过对比实验进行论证,实验结果表明改进后的图像识别模型具备检测精度高的应用优势。
In the image recognition of obstacles ahead of the ship, the traditional image recognition system has a high probability of missed detection and poor detection performance, which is difficult to meet the requirements of safe navigation of ships. Deep learning is an intelligent technology, and its application to obstacle image recognition can improve the efficiency of image information screening, calculation and detection. This paper introduces the neural network model and convolutional neural network in deep learning, and the detection method of deep learning in the image recognition of obstacles in front of ships. Based on the shortcomings of traditional deep learning algorithms, an improved Faster R-CNN method is proposed in the application of obstacle image recognition is demonstrated by comparison experiments. The experimental results show that the improved image recognition model has the application advantages of high detection accuracy.
2022,44(6): 157-160 收稿日期:2021-10-26
DOI:10.3404/j.issn.1672-7649.2022.06.033
分类号:TP391
基金项目:国家自然科学基金资助项目(62076215)
作者简介:李先锋(1974-),男,博士,副教授,主要从事计算机视觉技术及传感器信息融合和复杂网络建模研究
参考文献:
[1] 张文. 基于灰关联分析的舰船障碍物自动识别系统[J]. 舰船科学技术, 2018(12A): 196–198
[2] 朱孟伟. 基于VR虚拟现实技术在舰船航行轨迹中的应用[J]. 舰船科学技术, 2019(22): 31–33
[3] 牛红光, 李军, 姜汉新. 基于MGS的海上井架及障碍物查询与显示系统实现[J]. 海洋测绘, 2008(1): 65–67,79
[4] 马俊凯, 刘宏波, 王祥磊. 一种舰船内部视频监控无线传输方法研究与设计[J]. 舰船电子工程, 2017(7): 53–57
[5] 吕进锋, 马建伟, 李晓静. 基于改进的随机路径图及和声算法的舰船航线规划[J]. 控制理论与应用, 2020(12): 2551–2559
[6] 敖茂尧, 陈婷. 船舶自动舵系统中滑膜控制器的PID优化设计[J]. 舰船科学技术, 2018(12A): 181–183
[7] 宋鹏汉, 辛怀声, 刘楠楠. 基于深度学习的海上舰船目标多源特征融合识别[J]. 中国电子科学研究院学报, 2021(2): 127–133
[8] 夏文辉, 万剑华, 曲川萍. 基于深度学习的光学遥感影像舰船检测算法对比分析[J]. 海洋科学, 2021(5): 96–102
[9] 侯笑晗 金国栋 谭力宁. 基于深度学习的SAR图像舰船目标检测综述[J]. 激光与光电子学进展, 2021(4): 45–56
[10] 岳瞳, 杨宇. 基于深度学习的可见光图像舰船目标检测与识别[J]. 舰船电子对抗, 2021(2): 77–82,95