为了揭示泡沫填充对复合夹层板剪切性能增强的机理,采用数值仿真方法模拟横向剪切载荷作用下空心夹层板和泡沫铝填充I型复合夹层板的失效过程,讨论泡沫铝对夹层板板格和腹板的支撑效应,分析孔隙率、平均孔径等材料参数对复合夹层板剪切性能的影响。结果表明,泡沫铝对复合夹层板的板格形成有效的内部支撑,有助于提高腹板的屈曲强度和复合夹层板的整体横向剪切强度。减小孔隙率能够增强复合夹层板的抗剪能力,孔洞平均直径对剪切强度影响较小。在夹层板空腔中填充泡沫铝能够显著提升I型复合夹层板抵抗横向剪切的能力。
In order to reveal the mechanism of foam-filling to enhance composite sandwich panel, the failure processes of empty and foam-filled I-core sandwich panels under transverse shear load were simulated by numerical simulation method. The supporting effect of aluminum foam on grids and webs of sandwich panel were discussed. The influence of material parameters on the shear performance of composite sandwich panel were analyzed, such as porosity and average pore diameter etc. The results show that aluminum foams provide an effective internal support for grids, which improve the buckling strength of the web and the overall transverse shear strength of composite sandwich panel. The decrease of porosity can enhance the shear resistance of composite sandwich panel. The average pore diameter has little effect on the shear strength. The filling of aluminum foam in cavities of sandwich panel can significantly improve the transverse shear resistance of I-core composite sandwich panel.
2022,44(8): 12-16 收稿日期:2021-08-23
DOI:10.3404/j.issn.1672-7649.2022.08.003
分类号:U663.9
作者简介:戴广民(1996-),男,硕士研究生,研究方向为船舶与海洋工程结构强度与优化设计
参考文献:
[1] 应程成. 论船舶结构中绿色制造工艺的设计及应用[J]. 技术与市场, 2021, 28(5):128+130
YING C C. Design and application of green manufacturing technology in ship structure[J]. Technology and Market, 2021, 28(5):128+130
[2] 马曙光, 周佳. 铝合金与船舶及海洋工程轻量化设计[J]. 中国海洋平台, 2017, 32(1):15-20
MA S G, ZHOU J. Aluminum application and lightweight optimization in ship and offshore structure design[J]. China Offshore Platform, 2017, 32(1):15-20
[3] HE W T, LIU J X, WANG S Q, et al. Low-velocity impact behavior of X-frame core sandwich structures-experimental and numerical investigation[J]. Thin-Walled Structures, 2018, 131:718-735
[4] ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading[J]. Engineering Structures, 2017, 151:459-471
[5] METSCHKOW B. Sandwich panels in shipbuilding[J]. Polish Maritime Research, 2006:5-8
[6] YAN L L, SU P B, HAN Y G, et al. Effects of aluminum foam filling on compressive strength and energy absorption of metallic Y-shape cored sandwich panel[J]. Metals, 2020, 10(12).
[7] 赵颖, 杨兆瀚, 石晓东. 泡沫铝材料提升游艇耐撞性的数值分析[J]. 山西建筑, 2018, 44(31):29-32
ZHAO Y, YANG Z H, SHI X D. Numerical analysis for improving yacht crashworthiness by aluminum foam[J]. Shanxi Architecture, 2018, 44(31):29-32
[8] CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43:6-15
[9] 闫雷雷, 赵雪, 赵静波, 等. 泡沫铝填充金属波纹板耦合增强机理研究[J]. 稀有金属材料与工程, 2018, 44(31):29-32
YAN L L, ZHAO X, ZHAO J B, et al. Coupling enhancement mechanism of aluminum foam-filled metallic corrugated sandwich panels[J]. Rare Metal Materials and Engineering, 2018, 44(31):29-32
[10] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真[J]. 中国舰船研究, 2018, 13(3):77-84
LI C P, ZHANG P, LIU J, et al. Numerical simulation of dynamic response of functionally graded aluminum foamsandwich panels under air blast loading[J]. Chinese Journal of Ship Research, 2018, 13(3):77-84
[11] SUN Y L, ZHANG X, SHAO Z S, et al. Image-based correlation between the meso-scale structure and deformation of closed-cell foam[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2017, 688:27-39
[12] 郭亚周, 刘小川, 白春玉, 等. 闭孔泡沫金属几种不同建模方法的对比性研究[J]. 航空材料学报, 2020, 40(4):85-91
GUO Y Z, LIU X C, BAI C Y, et al. Comparative study of several different modeling methods for clossed-cell metal foam[J]. Journal of Aeronautical Materials, 2020, 40(4):85-91