复合材料轻质、高强度及其优质的阻尼性能在减振结构设计领域有着广泛的应用前景。为探究复合材料在结构减振方面的效果,基于Abaqus软件对钢制管件和复合材料管件进行模态分析。通过频响试验测试钢制管件和复合材料管件的固有频率和阻尼比,并在复合材料管件内部填充装有不同比例阻尼沙的周期振子,实现增加结构阻尼的目的。基于该研究对矩形式桁架进行优化,利用动态试验测定复合材料桁架的振动传递性能。试验结果表明,在相同的情况下,复合材料管的阻尼比钢管提升了40.54%,且当阻尼沙在周期振子中的填充率为75%时,其阻尼效果最佳,阻尼比达0.0229。复合材料桁架加速度振级落差可以提升6.94 dB,在复合材料管内填充周期振子可进一步增加桁架的减振效果。
Composite materials with light weight, high strength and excellent damping performance have a wide application prospect in the field of vibration reduction structure design. In order to explore the effect of composite materials in structural vibration reduction, this paper conducts modal analysis on steel pipe fittings and composite pipe fittings based on Abaqus software. The natural frequency and damping ratio of steel pipe fittings and composite pipe fittings are tested through frequency response tests, and periodic oscillators with different proportions of damping sand are filled in the composite pipe fittings to achieve the purpose of increasing structural damping. Based on this research, the rectangular truss perform optimization and use dynamic tests to determine the vibration transmission performance of the composite truss. The test results show that under the same conditions, the damping of the composite pipe is 40.54% higher than that of the steel pipe, and when the filling rate of the damping sand in the periodic oscillator is 75%, the damping effect is the best, with a damping ratio of 0.022 9. The acceleration vibration level difference of the material truss can be increased by 6.94 dB, and the filling of periodic oscillators in the composite material tube can further increase the vibration damping effect of the truss.
2022,44(8): 17-23 收稿日期:2021-09-13
DOI:10.3404/j.issn.1672-7649.2022.08.004
分类号:U661
基金项目:国家自然科学基金资助项目(11802212)
作者简介:李旭(1990-),男,硕士,工程师,研究方向为结构与材料
参考文献:
[1] 牟文珺. 复合材基座对船舶设备振动传递的控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[2] GIBSON R F. Modal vibration response measurements for characterization of composite materials and structures[J]. Composites Science and Technology, 2000, 60(15):2769-2780
[3] ABRAMOVICH H, GOVICH D, GRUNWALD A. Damping measurements of laminated composite materials and aluminum using the hysteresis loop method[J]. Progress in Aerospace Sciences, 2015, 78:8-18
[4] HONG Y, HE X D, WANG R G. Vibration and damping analysis of a composite blade[J]. Materials and Design, 2012, 34(2):98-105
[5] VESCOVINI, RICCARDO, BISAGNI, et al. A procedure for the evaluation of damping effects in composite laminated structures[J]. Progress in Aerospace Sciences, 2015.
[6] 赵树磊, 郭万涛, 吴医博. 复合材料基座减振性能试验研究[J]. 材料开发与应用, 2009, 24(04):8-13
[7] 洪明, 陈浩然, 寇长河. T300/QY8911复合材料层合板梁动力响应试验研究[J]. 玻璃钢/复合材料, 2000(5):3-5
[8] BHUDOLIA S K, GOHEL G, LEONG K F, et al. Damping, impact and flexural performance of novel carbon/Elium® thermoplastic tubular composites[J]. Composites Part B, 2020:203
[9] 杨睿, 王壮, 李晓彬, 等. 舰艇浮筏隔振系统的发展与趋势[J]. 船舶工程, 2020, 42(7):28-34
[10] 陈剑, 邓海华, 程用超, 等. 浮筏减振装置减重及控制方法研究[J]. 机电设备, 2019, 36(4):12-15+19
[11] 方同, 薛璞. 振动理论及应用[M]. 西安:西北工业大学出版社, 1998.
[12] 况成玉, 张志谊, 华宏星. 周期桁架浮筏系统的隔振特性研究[J]. 振动与冲击, 2012, 31(2):115-118+135