集成电机泵喷推进器在水下工作时,由于压差,当水流流过间隙流道时,会在间隙中产生摩擦功耗。为了更加准确地了解集成电机泵喷推进器的水动力性能,首先对轮缘摩擦扭矩的影响因素进行分析,确定不同影响因素的几何参数对轮缘摩擦扭矩的影响规律,计算结果与经验值吻合良好。基于此,分析有无间隙流动对推进器敞水性能的影响情况,进而分析在间隙流动状态下,不同间隙参数对推进器敞水性能的影响规律。结果表明,可通过减小轴向间隙等方法达到降低轮缘的摩擦扭矩,有无间隙流动时效率都随着转速的增加先减小再增大,有间隙模型时的效率总是大于无间隙模型。
When the IMP propulsor works underwater, due to the pressure difference, when the water flows through the gap flow channel, frictional power consumption will be generated in the gap. In order to understand the hydrodynamic performance of IMP propulsor more accurately, this article first analyzed the influencing factors of wheel rim friction torque, and determined the influence law of geometric parameters of different influencing factors on wheel rim friction torque, calculation results and empirical values good agreement. Based on this, the influence of the presence or absence of clearance flow on the open-water performance of the propulsor was analyzed, and the influence of different clearance parameters on the open-water performance of the propulsor in the state of clearance flow was analyzed. The results show that: the friction torque of the rim can be reduced by reducing the axial clearance, etc. The efficiency of the flow with or without clearance will first decrease and then increase with the increase of the speed. The efficiency of the model with clearance is always greater than that with no clearance model.
2022,44(8): 50-55 收稿日期:2021-08-21
DOI:10.3404/j.issn.1672-7649.2022.08.010
分类号:U664.3
基金项目:广东省普通高校青年创新人才类项目(自然科学类)(2020KQNCX112);广东理工学院创新强校工程项目(2019GKJZK004)
作者简介:李俏(1990-),女,博士研究生,讲师,研究方向为数字化设计与制造、泵喷机械
参考文献:
[1] 王东, 靳栓宝, 魏应三, 等. 集成电机推进装置应用综述[J]. 中国电机工程学报, 2020, 40(11):3654-3663
WANG Dong, JING Shuan-bao, WEI Ying-san, et al. Review on the integrated electric propulsion system configuration and its applications[J]. Proceedings of the CSEE, 2020, 40(11):3654-3663
[2] MICHAEL T, JESSUP S,SCHERER O. AHFID propulsor performance prediction[R]. NSWCCD Technical Report, NSWCCD-50-TR-2003/003, 2006.
[3] BILGEN E, BOULOS E. Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers[J]. Transactions of ASME, Journal of Fluids Engineering, 1979(Suppl.95):122-126
[4] DAILY J, NECE R. Chamber dimension effects on induced flow and friction resistance of enclosed rotating disks[J]. Transaction of ASME, Journal of Basic Engineering, 1965(Suppl.82):217-232
[5] CAO Qing-ming, et al. Prediction of loading distribution and hydrodynamic measurements for propeller blades in a rim driven thruster[J]. Journal of Hydrodynamics, 2012(Suppl.24):50-57
[6] 韦喜忠, 唐曹庆明, 登海, 等. 有/无压差的间隙流动对轮缘推进器水动力的影响研究[J]. 水动力学研究与进展A辑, 2015, 30(5):485-494
WEI Xi-zhong,TANG Cao-qing-ming, DENG Hai, et al. Study of gap flow effects on hydrodynamic performance of rim driver thrusters with/without pressure difference[J]. Chinese Journal of Hydrodynamics, 2015, 30(5):485-494
[7] CAO Qing-ming, et al. Effect of gap flow on the torque for blades in a rim driven thruster without axial pressure gradient[J]. Procedia Engineering, 2015:126
[8] LIU Bao, VANIERSCHOT M. Numerical study of the hydrodynamic characteristics comparison between a ducted propeller and a rim-driven thruster[J]. Applied Sciences, 2021, 11(11).
[9] LIU Bao, et al. Research on regular pattern of gap flow in shaftless rim-driven thruster[C]//In 2017 4th International Conference on Transportation Information and Safety (ICTIS),IEEE,2017(8):134-138
[10] 柯永胜, 马骋. 轮缘推进器叶梢间隙流动预报方法研究[J]. 应用科技, 2019, 46(1):6-10
[11] 翁凯强, 王超, 胡建, 等. 间隙流动模型对泵喷推进器水动力性能的影响[J]. 哈尔滨工程大学学报, 2021, 42(1):21-26
WENG Kai-qiang, et al. Effect of the gap-flow model on the hydrodynamic performance of a pump-jet propulsor[J]. Journal of Harbin Engineering University, 2021, 42(1):21-26
[12] HU Jian, et al. Prediction of hydrodynamic performance of pump jet propulsor considering the effect of gap flow model[J]. Ocean Engineering, 2021:233
[13] 鹿麟, 李强, 高跃飞. 不同叶顶间隙对泵喷推进器性能的影响[J]. 华中科技大学学报(自然科学版), 2017, 45(8):110-114
[14] ZHU Zhi-feng, FANG Shi-liang. Numerical investigation of cavitation performance of ship propellers[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(3):347-353
[15] BUSSE F H. The bounding theory of turbulence and its physical significance in the case of turbulent couette flow[R]. Statistical Models and Turbulence, the Springer Lecture Notes in Physics, 12, 103, 1972.