FPSO由于在深海环境下服役,受到波浪、海风、拖航等工况的影响造成中拱中垂,导致船体变形造成模块的相对运动使管道产生位移。又因为FPSO生产能力不断增强吨位不断加大,管路的复杂性和紧凑型也随着不断增大。在对FPSO管系进行应力分析时,传统中拱中垂工况需要大量的工时进行分析、验证、检查,其潜在工时达到2500 h。本文利用行业内常用的CAESAR II软件,通过船体变形量导致的管道附加位移和热胀位移进行结合计算出其热胀系数代替传统的工况分析方法,并验证了此方法的准确性,为FPSO管道系统生产设计提供技术借鉴。
Due to the FPSO's service in the deep sea environment, the hogging/sagging due to the influence of waves, sea breeze, towing and other working conditions, resulting in the deformation of the hull, the relative movement of the modules and the displacement of the pipeline, and the continuous increase in tonnage due to the continuous increase of FPSO production larger, the complexity and compactness of the pipeline also continue to increase. In the stress analysis of the FPSO piping system, the traditional sagging condition requires a lot of man-hours for analysis, verification, and inspection, and the potential man-hours reach 2500 hours. In this paper, the CAESAR II software commonly used in the industry is used to calculate the thermal expansion coefficient through the combination of the additional displacement of the pipeline caused by the deformation of the hull and the thermal expansion displacement to replace the traditional working condition analysis method, and verify the accuracy of this method, provide technical reference for the production and design of FPSO piping systems.
2022,44(8): 90-94 收稿日期:2021-01-06
DOI:10.3404/j.issn.1672-7649.2022.08.018
分类号:U664.84
基金项目:基础研究计划(自然科学基金)—青年基金项目(BK20201007)
作者简介:王军(1978-),男,硕士,副教授,研究方向为船舶轮机系统及设备性能分析与优化
参考文献:
[1] 张建. 深海FPSO关键管路应力分析[D]. 镇江:江苏科技大学, 2015.
[2] 程久欢, 雷俊杰, 纪志远. FPSO上部模块管道支架位移计算方法[J]. 石油工程建设, 2018, 44(5):32-36
CHENG Jiu-huan, LEI Jun-jie, JI Zhi-yuan. Calculation method of FPSO upper module pipeline support displacement[J]. Petroleum Engineering Construction, 2018, 44(5):32-36
[3] ROBLETO R, WILLIAMS J. Efficiency and economy of automating displacements for FPSO pipe stress analysis[C]//Offshore Technology Conference, 2010.
[4] 刘亚江. CAESARII管道应力分析理论[J]. 管道技术与设备, 2003(2):6-9
LIU Ya-jiang. CAESARII pipeline stress analysis theory[J]. Pipeline Technology and Equipment, 2003(2):6-9
[5] 刘镜军. 浮式生产储油船管道应力分析[J]. 化工设备与管道, 2007(2):47-50
LIU Jing-jun. Stress analysis of the pipeline of a floating production and storage tanker[J]. Chemical Equipment and Piping, 2007(2):47-50
[6] 唐永进. 压力管道应力分析[M]. 北京:中国石化出版社, 2010.
[7] 王战勇, 范威, 张巍伟, 等. FPSO上部模块管道应力工况研究[C]//压力管道技术研究进展精选集——第四届全国管道技术学术会议, 2010:97-100.
WANG Zhan-yong, FAN Wei, ZHANG Wei-wei, et al. Research on FPSO upper module pipeline stress conditions[C]//Selected Collection of Research Progress in Pressure Piping Technology-The Fourth National Conference on Piping Technology, 2010:97-100.
[8] 程久欢, 纪志远, 雷俊杰. FPSO船体管道应力分析方法研究[J]. 石油和化工设备, 2020, 23(8):17-20
CHENG Jiu-huan, JI Zhi-yuan, LEI Jun-jie. Research on stress analysis method of FPSO hull pipeline[J]. Petroleum and Chemical Equipment, 2020, 23(8):17-20
[9] CAESAR II 2013. Computer Software, Intergraph[R]. Huntsville, AL, USA, 2013.