蓝绿激光作为海水透射窗口,凭借其在海水中的较低损耗和自身较高调制带宽的特点,成为解决跨介质对潜通信的有效手段之一。针对星潜激光通信中大气背向散射以及海面反射效应引起水下平台位置暴露这一安全隐患问题,通过建立分层式星潜激光传输模型,仿真模拟在不同大气条件下星潜下行激光的米氏后向散射和反射效应。结合仿真结果及现有光学探测灵敏度,证明在星潜激光通信中,水下平台存在被定位的可能性,为后续装备技术发展提供参考指导。
The blue-green laser, as a seawater projection window, has become one of the effective means to solve cross-medium submarine communication by virtue of its lower loss in seawater and its own higher modulation bandwidth. This article focuses on the potential safety hazards of exposure of the position of underwater platforms caused by atmospheric backscattering and sea surface reflection effects in satellite-submarine laser communication. By establishing a layered satellite submarine laser transmission model, the Mie backscattering and reflection effects of the satellite submersible laser under different atmospheric conditions are simulated. Combining the simulation results and the existing optical detection sensitivity, it proves that the underwater platform has the possibility of being located in the satellite-submarine laser communication, providing reference guidance for the subsequent development of equipment and technology.
2022,44(8): 127-130 收稿日期:2021-09-30
DOI:10.3404/j.issn.1672-7649.2022.08.026
分类号:TN929.12
基金项目:中国船舶重工集团有限公司科技创新与研发项目(201811K)
作者简介:李亚平(1990-),男,博士,工程师,研究方向为量子信息技术
参考文献:
[1] 杨坤, 杜度. 国外对潜通信技术发展研究. 舰船科学技术, 2018, 40(1):153-157.
YANG Kun, DU Du. Research on the development of foreign submarine communication technology[J]. Ship Science and Technology, 2018, 40(1):153-157.
[2] 徐涛, 温东, 陈晓露. 基于低轨道卫星的激光星潜双向通信研究[J]. 通信技术, 2016, 49(6):656-661
XU Tao, WEN Dong, CHEN Xiao-lu. Scheme research on satellite and submarine blue-green laser two-way communication initiated with LEO satellite[J]. Communications Technology, 2016, 49(6):656-661
[3] DUNTLEY S Q. Light in the Sea[J]. Journal of the Optical Society of America, 1963, 53(2):214-233
[4] MCCONATHY D R. Submarine laser communications[C]//Electronics and Aerospace Systems Conference, 1982.
[5] THOMPSON R B, LOPES E F. The effects of focusing and refraction on gaussian ultrasonic beams[J]. Journal of Nondestructive Evaluation, 1984, 4(2):107-123
[6] 贺岩, 周田华, 陈卫标, 等. 水下与空中平台蓝绿激光通信关键技术研究[J]. 科技资讯, 2016, 14(1):176
[7] KIZILKAYA S. Optical propagation through the ocean surface[D]. The Pennsylvania State University, 2012.
[8] Laser Communication and Propagation through the Atmosphere and Oceans VII. International Society for Optics and Photonics, 2018, 10770:1077002.
[9] 李祥震, 苗希彩, 亓晓. 复杂海况下激光气-海信道传输特性[J]. 光学学报, 2018, 38(3):243-248
[10] 祖耶夫 B E, 卡巴诺夫 M B. 北京:光信号在地球大气中的传输[M]. 北京:科学出版社, 1987.
[11] MCCARTNEY E J. Optics of the atmosphere[J]. Phys Today, 1977.
[12] 刘延武, 王红星. 海上激光斜程传输的大气透过率研究[J]. 应用激光, 2010, 30(3):65-67
[13] 王毅, 饶瑞中. 空间斜程能见度的影响因素分析[J]. 强激光与粒子束, 2003, 15(10):945-950
[14] ULABY F T, MOORE R K, FUNG A K. Microwave remote sensing fundamentals and radiometry[C]//Microwave Remote Sensing:Active and Passive. 2010:5.
[15] RAHMAN A K, ANUAR M S, ALJUNID S A, et al. Study of rain attenuation consequence in free space optic transmission[C]//Telecommunication Technologies 2008 and Malaysia Conference on Photonics. Nctt-Mcp 2008. National Conference on. IEEE, 2009:64-70.