船舶在内河航道航行时,当船体吃水深度过大,容易发生船舶与航道的碰撞和搁浅事故,造成生命财产损失,因此,有必要对内河航道的船舶吃水状态进行实时监控。本文设计一种在线式船体吃水深度监测系统,该系统利用超声波传感器获取船体的吃水深度数据,并结合数据挖掘技术对海量的船舶吃水深度数据进行分类和识别,提高船体吃水深度数据的准确性,有利于保障内河航运安全性。
When the ship is sailing in the inland waterway, when the hull draft is too large, the collision and grounding accidents between the ship and the waterway are easy to occur, resulting in the loss of life and property. Therefore, it is necessary to monitor the ship draft state in the Inland Waterway in real time. In this paper, an online hull draft monitoring system is designed. The system uses ultrasonic sensor to obtain the hull draft data, and combines data mining technology to classify and identify the massive ship draft data, so as to improve the accuracy of hull draft data and ensure the safety of inland shipping traffic.
2022,44(8): 186-189 收稿日期:2021-08-25
DOI:10.3404/j.issn.1672-7649.2022.08.040
分类号:U646.24
作者简介:李舒乙(2002-),男,本科,研究方向为计算机算法
参考文献:
[1] 陈宁, 秦建敏, 李国宏, 等. "最小二乘法变点冰水情数据处理算法"的研究与应用[J]. 数学的实践与认识, 2012, 42(1):108-114
[2] 刘志青, 李鹏程, 郭海涛, 等. 融合强阈值三角网与总体最小二乘曲面拟合滤波[J]. 红外与激光工程, 2016, 45(4):135-142
[3] 车金锐, 梁刚, 陈敏茹. 基于小波测量预处理的最小二乘估计[J]. 数学的实践与认识, 2006(4):98-101
[4] 张剑清. 基于特征的最小二乘匹配理论精度[J]. 武汉测绘科技大学学报, 1988(4):82-90