流动减阻问题是科学与工程界长久以来关注的重点问题,对国民经济和国防军事具有重要影响。受自然界中荷叶、猪笼草等生物的启发,制备出仿生水下滑移表面,其主要分为气-液界面和液体浸润表面。水下滑移边界减阻技术可以实现较高的减阻效果,然而目前对水下滑移边界减阻技术的研究还存在诸多不足。本文立足于水下滑移边界减阻技术,论述了水下滑移边界的基本理论、实现形式,重点介绍气-液界面和液体浸润表面减阻的研究现状,探讨了减阻研究中存在的关键科学问题,最终对水下航行器减阻技术的未来发展趋势进行了展望。
Drag reduction has attracted a lot of attention in both engineering and sciences, which is important for national economy and military defense. Inspired by nature such as lotus and Nepenthes, biological underwater slip surfaces are fabricated, which mainly contain liquid-gas interface and liquid-infused surface. Underwater slip boundary technology shows good performance on drag reduction, while the study on drag reduction by underwater slip boundary technology is still unclear. Based on the underwater slip boundary drag reduction technology, this paper reviews the basic theories and implementation of underwater slip boundary and particularly overviews the study on drag reduction by liquid-gas interface and liquid-infused surface. Moreover, the key scientific issues of underwater slip boundary drag reduction are discussed. At last, this review looks forward to the future trends of drag reduction technology for underwater vehicles.
2022,44(9): 1-6 收稿日期:2022-02-16
DOI:10.3404/j.issn.1672-7649.2022.09.001
分类号:U666.1
基金项目:国家自然科学基金资助项目(11988102, U2141251, 11872004, 91848201)
作者简介:李宏源(1989-),男,博士,助理研究员,研究方向为微纳米力学、流固耦合力学、水下航行器减阻
参考文献:
[1] RASHIDI S, HAYATDAVOODI M, ESFAHANI J A, Vortex shedding suppression and wake control: A review [J]. Ocean Engineering, 2016, 126: 57–80.
[2] 冯景祥, 姚尧, 潘峰, 等. 国外水下无人装备研究现状及发展趋势[J]. 舰船科学技术, 2021, 43(23): 1–8
[3] FUKUDA K, TOKUNAGA J, NOBUNAGA T, et al. Frictional drag reduction with air lubricant over a super-water-repellent surface[J]. Journal of Marine Science & Technology, 2000, 5(3): 123–130
[4] XUE Y H, LV P Y, LIN H, et al. Underwater superhydrophobicity: Stability, design and regulation, and applications[J]. Applied Mechanics Reviews, 2016, 68(3): 30803
[5] ROTHSTEIN J P. Slip on Superhydrophobic Surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 89–109
[6] KARATAY E, HAASE A S, VISSER C W, et al. Control of slippage with tunable bubble mattresses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8422–8426
[7] LI D D, LI S C, XUE Y H, et al. The effect of slip distribution on flow past a circular cylinder[J]. Journal of Fluids and Structures, 2014, 51: 211–224
[8] EMAMI B, TAFRESHI H V, GAD-EL-HAK M, et al. Effect of fiber orientation on shape and stability of air–water interface on submerged superhydrophobic electrospun thin coatings[J]. Journal of Applied Physics, 2012, 111(6): 64325
[9] PIAO L, PARK H. Two-dimensional analysis of air-water interface on superhydrophobic grooves under fluctuating water pressure[J]. Langmuir, 2015, 31(29): 8022–8032
[10] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46(1): 179–225
[11] WONG T S, KANG S H, TANG S, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443–447
[12] FU M K, ARENAS I, LEONARDI S, et al. Liquid-infused surfaces as a passive method of turbulent drag reduction[J]. Journal of Fluid Mechanics, 2017, 824: 688–700
[13] YAN X T, JIN Y K, CHEN X M, et al. Nature-inspired surface topography: design and function[J]. Science China Physics, Mechanics & Astronomy, 2019, 63(2): 224601
[14] LIU Y, WEXLER J S, SCH?NECKER C, et al. Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces[J]. Physical Review Fluids, 2016, 1(7): 74003
[15] 文俊, 胡海豹, 杜鹏, 等. 超疏水表面水下减阻研究[C]//第二十九届全国水动力学研讨会, 2018.
[16] CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6): 66001
[17] OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12): 4635–4643
[18] PARK H, PARK H, KIM J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11): 110815
[19] HU H, WEN J, BAO L, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): 1603288.
[20] DONG S, SONG B, HU H, et al. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface[J]. Physical Review Fluids, 2018, 3(3).
[21] PEAUDECERF F J, LANDEL J R, GOLDSTEIN R E, et al. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7254–7259
[22] LI H, LI Z, TAN X, et al. Three-dimensional backflow at liquid–gas interface induced by surfactant[J]. Journal of Fluid Mechanics, 2020: 899
[23] FUKAGATA K, KASAGI N, KOUMOUTSAKOS P. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces[J]. Physics of Fluids, 2006, 18(5): 360
[24] TAEGEE M, JOHN K. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): 55–58
[25] GOSE J W, GOLOVIN K, BOBAN M, et al. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow[J]. Journal of Fluid Mechanics, 2018, 845: 560–580
[26] ZHANG J, TIAN H, YAO Z, et al. Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J]. Experiments in Fluids, 2015, 56(9).
[27] LING H, SRINIVASAN S, GOLOVIN K, et al. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2016, 801: 670–703
[28] LI H, JI S, TAN X, et al. Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid–gas interface[J] Physics of Fluids, 2020, 32: 122111.
[29] SOLOMON B R, KHALIL K S, VARANASI K K. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow[J]. Langmuir, 2014, 30(36): 10970
[30] ROSENBERG B J, BUREN T V, FU M K, et al. Turbulent drag reduction over air and liquid impregnated surfaces [J]. Physics of Fluids, 2016, 28(1).
[31] VAN BUREN T, SMITS A J. Substantial drag reduction in turbulent flow using liquid-infused surfaces[J]. Journal of Fluid Mechanics, 2017, 827: 448–456
[32] FU M K, ARENAS I, LEONARDI S, et al. Liquid-infused surfaces as a passive method of turbulent drag reduction[J]. Journal of Fluid Mechanics, 2017, 824: 688−700.
[33] ZHANG S, OUYANG X, Li J, et al. Underwater drag-reducing effect of superhydrophobic submarine model[J]. Langmuir, 2015. 31(1): 587.
[34] REHOLON D, GHAEMI S. Plastron morphology and drag of a superhydrophobic surface in turbulent regime[J]. Physical Review Fluids, 2018, 3(10).
[35] XU M, GRABOWSKI A, YU N, et al. Superhydrophobic drag reduction for turbulent flows in open water[J]. Physical Review Applied, 2020, 13(3).