在焊接过程中会产生材料硬化,如果在计算时不考虑该现象,有可能会使焊接残余应力的结果与实际结果不相符合。本文基于热弹塑性数值模拟方法分别对材料为SUS304不锈钢、屈服强度为918 MPa的高强度钢、Q345钢这3种钢材和Ti80对接焊平板模型的残余应力进行分析计算,重点研究材料硬化模型对焊接残余应力的影响,即采用等向硬化模型、随动硬化模型和不考虑硬化模型的理想弹塑性模型对对接焊平板模型进行残余应力模拟,其中SUS304不锈钢、屈服强度为918 MPa的高强度钢和Ti80对接焊平板的数值模拟结果与文献中的试验结果进行对比研究。在两者结果相一致的基础上,分析了硬化模型对Q345钢对接焊平板模型残余应力的影响。研究结果表明:采用等向硬化模型计算得到的对接焊平板残余应力计算结果最大,更加符合实际结果,且对纵向残余应力的影响大于横向残余应力;相比钢材来说,硬化模型对Ti80对接焊平板模型残余应力的影响较小。
The material hardening would be occured in the process of welding. If this phenomenon is not taken into account in the calculation, the results of welding residual stress might be inconsistent with the actual results. The residual stress of butt welded plate models made of SUS304 stainless steel, high-strength steel with the yield strength of 918MPa, Q345 steel and Ti80 was analyzed and calculated with the thermal elastic-plastic theory.The effect of material hardening model on welding residual stress was emphatically studied, that is, the residual stress of the flat butt welded model were simulated with the isotropic hardening model, the kinematic hardening model and the perfect plasticity model.And the results of numerical simulation of SUS304 stainless steel, high strength steel with yield strength of 918MPa and Ti80 flat butt welded models were compared with the experimental results in references. On this basis, the residual stress of Q345 flat butt welded plate model with the influence of hardening model was analyzed. The results show that the calculation results of the residual stress of butt welding plate obtained by the isotropic hardening model are the largest and more consistent with the actual results. The effect of hardening criterion on longitudinal residual stress is greater than that on transverse residual stress. Compared with these steels, the hardening criterion has less influence on the residual stress of Ti80 flat butt welded model.
2022,44(9): 12-17 收稿日期:2021-01-05
DOI:10.3404/j.issn.1672-7649.2022.09.003
分类号:U671.8
基金项目:国家重点研究发展计划项目(2017YFC0305501)
作者简介:薄纯瑞(1994-),男,硕士研究生,主要从事船舶与海洋结构物制造力学研究
参考文献:
[1] LEMAITRE J, JEAN-LOUIS C. Mechanics of Solid Materials[M]. Cambridge University Press, 1990.
[2] JEAN-LOUIS C. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24(10): 1642–1693
[3] MICHAEL C S, RENé V M, MURáNSKY O, et al. Comprehensive numerical analysis of a three-pass bead-in-slot weld and its critical validation using neutron and synchrotron diffraction residual stress measurements[J]. International Journal of Solids and Structures, 2012, 49(9): 1045–1062
[4] MICHAEL C S, ROGER J D, JOHN B, et al. Accurate prediction of residual stress in stainless steel welds[J]. Computational Materials Science, 2012, 54: 312–328
[5] MURANSKY O, CORY H, VIPULKUMAR I P, et al. The influence of constitutive material models on accumulated plastic strain in finite element weld analyses[J]. International Journal of Solids and Structures, 2015, 69/70: 518–530
[6] XU Jijin, PHILIPPE G, et al. Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYSWELD[J]. International Journal of Pressure Vessels and Piping, 2012: 99–100
[7] MICHAEL C S, ANN C S. NeT bead-on-plate round robin: Comparison of residual stress predictions and measurements[J]. International Journal of Pressure Vessels and Piping, 2008, 86(1)
[8] JIAMIN S, JONAS H, JAKOB K, et al. Solid-state phase transformation and strain hardening on the residual stresses in S355 steel weldments[J]. Journal of Materials Processing Technology, 2019, 265: 173–184
[9] DENG D, ZHANG Chaohua, PU Xiaowei, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1494–1505
[10] 戴德平. 奥氏体不锈钢焊接接头残余应力的数值模拟研究[D]. 重庆: 重庆大学, 2016.
[11] WANG Qiang, LIU Xuesong, WANG Ping, et al. Numerical simulation of residual stress in 10Ni5CrMoV steel weldments[J]. Journal of Materials Processing Technology, 2017, 240: 77–86
[12] 耿鲁阳, 涂善东, 巩建鸣, 等. 不同材料硬化模型模拟13MnNiMoR钢超厚圆筒对接环焊接残余应力[J]. 机械工程材料, 2019, 43(3): 60–66
[13] 刘瑞堂, 刘文博, 刘锦云. 工程材料力学性能[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001.
[14] 卓家寿, 黄丹. 工程材料的本构演绎[M]. 北京: 科学出版社, 2009: 58-86.
[15] LI Liangbi, JIA Qianqian, WAN Zhengquan, et al. Experimental and numerical investigation of effects of residual stress and its release on fatigue strength of typical FPSO-unit welded joint[J]. Ocean Engineering, 2020, 196: 106858
[16] 拉达伊. 焊接热效应: 温度场﹑残余应力﹑变形[M]. 北京: 机械工业出版社, 1997.
[17] CARLOS G. Matos, Robert Dodds. Modeling the effects of residual stresses on defects in welds of steel frame connections[J]. Engineering Structures, 2000, 22(9): 1103–1120
[18] 陈家权, 沈炜良, 尹志新, 等. 基于单元生死的焊接温度场模拟计算[J]. 热加工工艺, 2005(7): 64–65
[19] LIU Chuan, LUO Ying, YANG Min, et al. Effects of material hardening model and lumped-pass method on welding residual stress simulation of J-groove weld in nuclear RPV[J]. Engineering Computations (Swansea, Wales), 2016, 33(5): 1435–1450
[20] LIU Chuan, LUO Ying, YANG Min, et al. Three-dimensional finite element simulation of welding residual stress in RPV with two J-groove welds[J]. Welding in the World, 2017, 61(1): 151–160
[21] 李万润, 张广隶, 刘宇飞, 等. Q345B钢梁柱节点焊接残余应力模拟及试验验证[J]. 华南理工大学学报(自然科学版), 2019, 47(10): 114–123
[22] 孙凯翔. 深海载人潜水器耐压球壳赤道焊接残余应力研究[D]. 镇江: 江苏科技大学, 2020.