复合材料板架作为轻量化船舶的主要构件,其设计是否合理对船舶本身的安全性和经济性具有重要意义。基于响应面法和有限元仿真,从结构重量和稳定性两方面着手对复合材料船舶开孔板架进行多目标优化设计。借助Ansys Workbench计算平台,对复合材料开孔板架进行静力学计算、特征值屈曲分析和响应面优化设计,获得一系列板架设计方案的稳定性参数和重量特征。优化过程中应用DOE试验设计技术和RSO响应面优化模型,确定采样点位置并拟合构造标准三维响应曲面。采用多目标遗传算法生成初始样本点,获得最佳设计方案。结果表明:面板厚度对板架重量和屈曲能力的影响最为敏感;优化设计方案减重效果较好,抗屈曲能力明显提高。该优化设计具有一定的实用价值,能为复合材料船舶改进优化、轻量化应用等提供有益参考。
As the main component of lightweight ships, the reasonable design of composite panel is of great significance to the safety and economy of ship itself. Based on response surface methodology and finite element simulation, the multi-objective optimization design of composite perforated panel was carried out from two aspects of structural weight and stability. With the help of Ansys Workbench, statics calculation, eigenvalue buckling analysis and response surface optimization design were carried out, and a series of parameters about the stability and weight of the perforated panel were obtained. In the optimization process, the design of experiments and response surface optimization were used to determine the location of sample points and construct standard 3D response surfaces. The multi-objective genetic algorithm was used to generate initial sample points and obtain the optimal design scheme. The results show that the thickness of the panel is most sensitive to the weight and buckling capacity of the perforated panel. The weight reduction effect of the optimized design is better, and the anti-buckling ability is significantly improved. The optimization design has a certain practical value, and can provide positive reference for the improvement and optimization of composite ships and lightweight application.
2022,44(9): 48-52 收稿日期:2021-10-13
DOI:10.3404/j.issn.1672-7649.2022.09.010
分类号:U672.3
基金项目:国家自然科学基金资助项目(51909103);福建省自然科学基金资助项目(2021J01841,2021J05164,2021J01844);福建省教育厅项目(JAT200290,JAT190336,JAT200267)
作者简介:朱兆一(1987-),男,硕士,实验师,主要从事船舶与海洋结构物优化设计
参考文献:
[1] KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018: 196
[2] 李晓文, 朱兆一, 李妍, 等. 复合材料-金属混合船舶极限强度研究综述[J]. 船舶力学, 2020, 24(5): 681–692
LI Xiaowen, ZHU Zhaoyi, LI Yan, et al. A review on ultimate strength of composite-metal hybrid ships[J]. Journal of Ship Mechanics, 2020, 24(5): 681–692
[3] 李晓文, 邵菲, 朱兆一, 等. 船舶轻量化T型连接结构设计及强度试验[J]. 船舶力学, 2018, 22(4): 454–463
LI Xiaowen, SHAO Fei, ZHU Zhaoyi, et al. Design and strength test of lightweight T joints for ships[J]. Journal of Ship Mechanics, 2018, 22(4): 454–463
[4] 李晓文, 朱兆一, 李妍, 等. 船舶复合材料加筋板屈曲和后屈曲行为研究[J]. 中国造船, 2020, 61(3): 186–194
LI Xiaowen, ZHU Zhaoyi, LI Yan, et al. Research on buckling and post buckling behavior of composite stiffened panel for ships[J]. Shipbuilding of China, 2020, 61(3): 186–194
[5] ZHAO W, XIE Z, WANG X, et al. Buckling behavior of stiffened composite panels with variable thickness skin under compression[J]. Mechanics of Advanced Materials and Structures, 2019: 1–9
[6] 陈彦廷, 于昌利, 桂洪斌. 船体板和加筋板的屈曲及极限强度研究综述[J]. 中国舰船研究, 2017(1): 54–62
CHEn Yanting, YU Changli, GUI Hongbin. Research development of buckling and ultimate strength of hull plate and stiffened panel[J]. Chinese Journal of Ship Research, 2017(1): 54–62
[7] BOX G, WILSON KB. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B:Statistical Methodology, 1951(1): 1–45
[8] 隋允康, 宇慧平. 响应面方法的改进及其对工程优化的应用[M]. 北京:科学出版社, 2011.
[9] 黄重阳, 林焰, 于雁云. 基于响应面法的强力甲板结构优化设计[J]. 中国舰船研究, 2012, 7(3): 46–50
HUANG Chongyang, LIN Yan, YU Yanyun. Structural optimization of bulk carrier strength deck by response surface methodology[J]. Chinese Journal of Ship Research, 2012, 7(3): 46–50