为保证船舶载波通信系统在通信过程中的稳定性,同时提升信道容量,研究多载波调制技术在船舶载波通信系统中的应用。该方法结合多进制频移键控(MFSK)和正交多载波调制(OFDM)(2种技术,组成自适应多制式正交多载波技术(MOMC)。发射端以约定的发射功率为依据发射信道测试信号,接收端收到该信号后,预测当前信道离散时变配频率结果,确定通信系统的调制方式和工作频带后;采用基于奇异值低复杂度MOMC的通信系统自适应调制算法,实现船舶载波通信系统载波比特、功率分配。同时通过正交变换模式和调制编码结合方法,控制最大峰值功率,实现船舶载波通信稳定传输。测试结果显示:该方法信号调制性能良好,调制后的信号能够被完整、可靠接收;单位时间内多径分配比特率结果在2.2~2.7 kbps之间,信道容量均在21 bit以上。
To ensure the stability of ship carrier communication system in the communication process, and improve the channel capacity, the application of multi-carrier modulation technology in ship carrier communication system is studied. This method combines the two technologies of multiprecary frequency shift keying (MFSK) and orthogonal multi-carrier modulation (OFDM) to form the adaptive multi-system orthogonal multi-carrier technology (MOMC). The transmitter transmits the channel test signal according to the agreed transmitting power. After receiving the signal, the receiver predicts the result of discrete time-varying frequency distribution of the current channel. After determining the modulation mode and working frequency band of the communication system. An adaptive modulation algorithm based on singular value and low complexity MOMC is adopted to realize carrier bit and power distribution of ship carrier communication system. At the same time, the maximum peak power is controlled by the combination of orthogonal transformation mode and modulation coding method to realize the stable transmission of ship carrier communication. The test results show that the signal modulation performance of this method is good, and the modulated signal can be received completely and reliably. The results of multipath allocation bit rate per unit time range from 2.2 kbps to 2.7 kbps, and the channel capacity is above 21 bit.
2022,44(9): 154-157 收稿日期:2021-12-25
DOI:10.3404/j.issn.1672-7649.2022.09.032
分类号:TN913
作者简介:张艳芳(1986-),女,硕士,讲师,主要从事现代通信技术研究
参考文献:
[1] 林建辉, 王炳轩, 孙杰. 船岸连接系统光通信数据调制解调设计与实现[J]. 船舶工程, 2020, 42(S1): 358–361
[2] 孙哲, 袁洋, 曹亚东, 等. 超高频通信系统在邮轮上的设计与应用[J]. 船舶工程, 2021, 43(1): 22–27
[3] 薛亮, 李娜, 赵辉, 等. 双向携能通信网络中子载波和功率联合分配[J]. 计算机应用研究, 2021, 38(3): 855–860
[4] 杨慧, 王睿, 沙彬斌. 新型多载波调制技术在无源光网络中的研究现状[J]. 光通信技术, 2020, 44(5): 18–22
[5] 张刚, 和华杰, 张鹏. 基于施密特正交化的降噪多载波相关延迟键控混沌通信系统[J]. 电子与信息学报, 2021, 43(7): 1930–1938
[6] 王红星, 陆发平, 刘传辉, 等. 基于广义信号索引的椭圆球面波函数多载波调制解调方法[J]. 中国科学:信息科学, 2021, 51(9): 1524–1539
[7] 邵凯, 付旭阳, 王光宇. 智能多载波波形调制系统: 信号的产生与识别[J]. 电子与信息学报, 2021, 43(11): 3096–3104
[8] 贺利芳, 吴雪霜, 张鹏, 等. 改进型正交多载波降噪差分混沌键控通信系统[J]. 系统工程与电子技术, 2021, 43(10): 3008–3016
[9] 付晓梅, 马鹏宇, 韩光耀. 基于联合频分复用的水下多载波调制技术[J]. 东北大学学报(自然科学版), 2020, 41(3): 311–315
[10] 杨大伟, 王红星, 刘传辉, 等. 基于连续相位调制的椭圆球面波多载波索引调制[J]. 电子科技大学学报, 2022, 51(1): 65–72