冰海结构物通常装备抗冰锥等倾斜面的抗冰结构物,用来减小平整冰移动产生的推挤载荷。平整冰推挤载荷是冰海结构物的重要设计技术指标,准确模拟平整冰推挤结构物的载荷特征和破碎冰堆积形态等规律具有重要意义。本文采用FEM-SPH耦合方法和有限元法分别模拟了平整冰推挤抗冰锥结构的过程和现象,分析了抗冰锥水线面直径对碎冰堆积形态及推挤载荷的影响规律。研究表明,与有限元法相比,FEM-SPH耦合方法不仅可以准确预报平整冰推挤结构的动态载荷,还可以直观再现破碎冰的堆积现象,有助于理解和分析平整冰与结构物的相互作用规律。本文的FEM-SPH耦合算法模型和分析结论可为研究和设计冰海结构物提供参考。
To reduce the pushing load caused by the movement of level ice, platforms in ice zone are usually equipped with anti-ice structures like ice cone or other structures with inclined surface. The pushing load caused by flat ice is an important technical index for the design of platform in ice area. It is of great significance to simulate the load characteristic relation of flat ice pushing structures and the accumulation patterns of crushing ice accurately. In this paper, FEM-SPH coupling algorithm and finite element method (FEM) were used to simulate the process, in which a ice cone were pushed by a flat ice, and the influence of the diameter of ice cone on the morphology of broken ice and the pushing load is analyzed. The results showed that, compared with FEM, FEM-SPH coupling algorithm can not only accurately predict the dynamic load of flat ice pushing structure, but also visually reproduce the accumulation of broken ice, which is helpful to understand and analyze the interaction law between flat ice and structure. In addition, the model and analysis conclusions about FEM-SPH coupling algorithm can provide reference for the research and design of structures in ice zone.
2022,44(10): 55-60 收稿日期:2021-05-21
DOI:10.3404/j.issn.1672-7649.2022.10.011
分类号:U656.6
基金项目:上海交通大学深蓝计划(SL2020ZD101)
作者简介:任禹陪(1997-),男,硕士研究生,研究方向为船舶与海洋工程
参考文献:
[1] PAQUETTE E, THOMAS G B. Ice crushing forces on offshore structures: Global effective pressures and the ISO 19906 design equation[J]. Cold Regions Science and Technology, 2017, 142: 23–68
[2] NECCI A, TARANTOLA S, VAMANU B, et al. Lessons learned from offshore oil and gas incidents in the Arctic and other ice-prone seas[J]. Ocean Engineering, 2019, 185: 12–26
[3] 张方俭. 海冰作用力在渤海海洋工程设计中的意义[J]. 海洋工程, 1987(2): 58–65
[4] 季顺迎. 渤海海冰数值模拟及其工程应用[D]. 大连: 大连理工大学, 2001.
[5] 季春群. 抗冰结构物的设计探讨[J]. 中国海洋平台, 1993, 2: 51–54
[6] CROASDALE K R, CAMMAERT A B. An improved method for the calculation of ice loads on sloping structures in first-year ice[J]. Hydrotechnical Construction, 1994, 28(3): 174–179
[7] 吴桐. 大连港长兴岛30万吨级原油码头工程破冰锥体应用[D]. 大连: 大连理工大学, 2018.
[8] 关湃, 黄焱, 万军, 等. 基于模型试验的导管架平台抗冰锥体优化设计[J]. 中国海洋平台, 2017, 32(4): 7–13
[9] 武海斌, 黄焱, 李伟. 大直径单桩风机基础冰荷载模型试验研究[J]. 海洋工程, 2018, 36(2): 83–91
[10] XU Ning, YUE Qianjin, BI Xiangjun, et al. Experimental study of dynamic conical ice force[J]. Cold Regions Science and Technology, 2015, 120: 21–29
[11] 陈晓东, 王安良, 季顺迎. 海冰在单轴压缩下的韧-脆转化机理及破坏模式[J]. 中国科学: 物理学 力学 天文学. 2018, 48(12): 24-35.
[12] 高明帅. 破冰船在破冰过程中的运动数值仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[13] SONG Ming, SHI Wei, REN Zheng-ru, et al. Numerical study of the interaction between level ice and wind turbine tower for estimation of ice crushing loads on structure[J]. Journal of Marine Science and Engineering, 2019, 7(12): 439
[14] ZHOU Li, DING Shi-feng, SONG Ming, et al. A simulation of non-simultaneous ice crushing force for wind turbine towers with large slopes[J]. Energies. 2019, 12(13): 2608.
[15] ABAYOMI O, SRINIVAS S. Efficient response modelling for performance characterisation and risk assessment of ship-iceberg collisions[J]. Applied Ocean Research. 2018, 74: 127−141.
[16] 齐雅薇. 基于SPH方法的船—冰相互作用仿真分析研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[17] 卞光夫. 基于SPH-FEM耦合算法的海冰-海洋结构物相互作用过程研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[18] CHEN Zhe, HE Yan-ping, HUANG Chao, et al. Numerical simulation of sloping structure-level ice interaction based on SPH-FEM conversion algorithm[C]// Proceedings of the Thirtieth (2020) International Ocean and Polar Engineering Conference. Shanghai, China, October 11-16, 2020.
[19] 曲月霞, 王永学, 李志军, 等. 作用于正倒锥结构上冰力物理模拟试验研究[J]. 大连理工大学学报, 2001(2): 231–236
[20] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720–1739
[21] Mahmud Sharif Sazidy. Development of velocity dependent ice flexural failure mode and application to safe speed methodology for polar ships[D]. Newfoundland: Faculty of Engineering and Applied Science Memorial University of Newfoundland, 2015.