为了利用舰船腐蚀静电场对舰船实现跟踪和定位,需要了解舰船腐蚀静电场在海水中的传播规律。采用三维边界元法建立潜艇腐蚀静电场模型,研究海水中水平方向、深度方向和斜45°方向上传播距离对舰船静电场的影响,分析静电场Ex,Ey和Ez分量在水下20 m处水平方向的分布规律和其在3个方向上的水下传播规律。仿真结果表明:在水下20 m处水平方向上Ex和Ez关于垂直面对称分布,Ey关于垂直面反对称分布;在3个方向上静电场分量随着距离的增加不断减小,Ex在3个方向上信号强度最大,可作为舰船定位和水中武器的目标信号。
In order to use the corrosion electrostatic field of ship to track and locate the ship, it is necessary to understand the propagation law of corrosion electrostatic field of ship in seawater. A three-dimensional boundary element method was used to establish a submarine corrosion electrostatic field model, and the influence of the propagation distance in the horizontal direction, the depth direction and the oblique 45° direction in the seawater on the electrostatic field of the ship was studied, and the components of Ex, Ey and Ez of the electrostatic field in the water were analyzed. The distribution law in the horizontal direction at the bottom 20 m and its underwater propagation law in three directions. The simulation results show that Ex and Ez were distributed symmetrically about the vertical plane in the horizontal direction at 20 m underwater, and Ey was distributed antisymmetrically about the vertical plane; the electrostatic field component decreases with the increase of distance. Ex is the highest in three directions, and can be used as the target signal for ship positioning and underwater weapons.
2022,44(10): 107-110 收稿日期:2021-01-18
DOI:10.3404/j.issn.1672-7649.2022.10.021
分类号:TM15
基金项目:国家自然科学基金资助项目(41476153)
作者简介:朱禛(1992-),男,硕士,助理工程师,研究方向为电磁环境与防护技术
参考文献:
[1] 姜润翔, 陈新刚, 张伽伟. 舰船电场及其应用[M]. 北京: 国防工业出版社, 2019.
[2] 何芳, 王向军, 张建春. 舰船腐蚀电场建模及补偿最优解验证[J]. 国防科技大学学报, 2019, 41(6): 118–125
[3] 刘胜道. 舰船水下电场的测试技术与电偶极子模型研究[D]. 武汉: 海军工程大学, 2002.
[4] JEFFREY I. Electromagnetic signature modeling and reduction[J]. The Newal Architect, 1999(8): 22–23
[5] 陈聪, 李定国, 龚沈光. 舰船静态电场深度换算方法[J]. 哈尔滨工程大学学报, 2009, 30(6): 719–722
[6] 徐庆林, 王向军, 张建春, 等. 温度对舰船阴极保护和腐蚀静电场的影响[J]. 国防科技大学学报, 2019, 41(4): 182–189
[7] DYMARKOWSKI K, UCZCIWEK J. The extremely low frequency electromagnetic signature of the electric field of the ship[C]//Conference Proceding. UDT Europe, 2001: 1-6.
[8] SCHAEFER D, ZION S, DOOSE J, et al. Numerical simulation of UEP signatures with propeller-induced ULF modulations in marritime ICCPsystem[C]//Marelec Marine Electromagnetics Conference, San Diego, 2011.
[9] 喻浩. 舰船电场和低频电磁场防护措施[J]. 舰船科学技术, 2000, 22(3): 37–39
[10] 张华, 王向军, 单潮龙, 等. 基于目标静电场的水中兵器制导方法研究[J]. 电子学报, 2013, 41(3): 470–474
[11] 曹寓. 舰船水下腐蚀静电场有限元仿真分析[J]. 舰船科学技术, 2015, 37(7): 69–72
[12] 陈聪, 李定国, 龚沈光. 基于拉式方程的舰船静态电场深度换算[J]. 电子学报, 2010, 38(9): 2025–2029
[13] LAN Z G, WANG X T, HOU B R, et al. Simulation of sacrificial anode protection for steel platform using boundary element method.[J]. Engineering Analysis with Boundary Elements, 2012, 36(5): 903–906
[14] 姜润翔, 胡英娣, 龚沈光. 基于点电源的传播静态电场深度换算方法研究[J]. 电波科学学报, 2014, 29(4): 685–693