水下爆炸产生的冲击波和气泡脉动等载荷对海洋结构物的安全性构成严重威胁,而水下爆炸试验成本高、数据获取难度大,因此,水下爆炸数值模拟研究具有重要意义。结构附近水下爆炸是一个复杂非线性流固耦合过程,如何准确模拟舰船结构在水下爆炸载荷作用下的毁伤效果是模拟研究中的焦点。使用Abaqus中的耦合欧拉-拉格朗日方法(CEL),同时具有欧拉法和拉格朗日法2种网格算法的优点,开展钢制平板近距水下爆炸过程数值模拟。基于Abaqus建立三维模型,仿真模拟水下爆炸载荷对钢制平板动态响应的影响,不同药量下平板响应进行对比。结果表明,相同的爆距下爆炸药量越大,平板的毁伤越剧烈,可为结构的毁伤评估及安全性预报提供依据。
The shock waves and bubble pulsation loads generated by underwater explosions pose a serious threat to the safety of marine structures. Therefore, numerical simulation research on underwater explosions is of great significance.Underwater explosion is an extremely complex multiphase flow phenomenon.How to accurately simulate the damage effect of ship structure under the action of underwater explosion load is the focus of simulation research.The explicit dynamics solver Coupled Eulerian-Lagrangian (CEL) is adopted here. A three-dimensional simulation model was established based on Abaqus, and the dynamic response of the steel plate under the action of underwater explosion was numerically simulated. The damage effect of the steel plate structure under the action of the underwater explosion load was analyzed, and the different explosive charges were compared. The dynamic response of the lower plate, the larger the explosive charge under the same blast distance, the more severe the damage of the plate.
2022,44(11): 8-11 收稿日期:2021-11-08
DOI:10.3404/j.issn.1672-7649.2022.11.002
分类号:U661.43
基金项目:国家自然科学基金资助项目(52101373);中国博士后科学基金面上资助项目(2021M692629)
作者简介:张晓庆(1997-),女,硕士研究生,研究方向为水下爆炸与舰船毁伤
参考文献:
[1] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601
[2] WEBSTER K G. Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary Lagrangian Eulerian finite element method[D]. US: Virginia Polytechnic Institute and State University, 2007.
[3] ARAMI M, KAKINOUCHI T, SHIBUE T. Structural response of a thin plate by underwater explosion loading[C]// The Eleventh International Offshore and Polar Engineering Conference, OnePetro, 2001.
[4] GUPTA N K, KUMAR P, HEGDE S. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion—a numerical study[J]. International Journal of Mechanical Sciences, 2010, 52(5): 733–44
[5] RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock[J]. International Journal of Impact Engineering, 2004, 30(6): 699–719
[6] ZONG Z, ZHAO Y, LI H. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock[J]. Marine Structures, 2013, 31: 24–43
[7] 胡奇, 王明振, 张家旭, 等. 基于耦合欧拉-拉格朗日方法的浮筒着水数值仿真 [J]. 系统仿真技术, 2019, 15(1): 18-22+40.
[8] 王晓辉, 褚学森, 冯光. 基于ABAQUS显式CEL方法的球体入水数值研究[J]. 船舶力学, 2018, 22(7): 838–844
WANG X H, CHU X S, FENG G. Numerical study of sphere entering water based on ABAQUS explicit cel method[J]. Ship Mechanics, 2018, 22(7): 838–844
[9] CHARLES M L. Numerical modeling of explosives and propellants [M]. CRC Press: 2007.
[10] 薛再清, 徐更光, 王廷增, 等. 用 KHT 状态方程计算炸药爆轰参数[J]. 爆炸与冲击, 1998(2): 77–81
[11] 吴雄, 龙新平, 何碧, 等. VLW爆轰产物状态方程[J]. 中国科学(B辑:化学), 2008, 12: 1129–1132
[12] KOLI S, CHELLAPANDI P, RAO L B, et al. Study on JWL equation of state for the numerical simulation of near-field and far-field effects in underwater explosion scenario[J]. Engineering Science and Technology an International Journal, 2020, 23(4): 758–68
[13] 宗智, 赵延杰, 邹丽. 水下爆炸结构毁伤的数值计算 [M]. 北京: 科学出版社, 2014.
[14] KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537(-1): 387–413
[15] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541–548