基于1阶剪切变形理论(FSDT)和Hamilton原理,利用狄拉克函数描述加筋,推导夹芯复合材料加筋板在真空中的自由振动控制方程;进一步假设浸没于水中的夹芯复合材料加筋板为薄板,根据流固耦合面上的法向加速度连续条件,对横向自由振动方程进行重构,得到整体结构在水中的控制方程。考虑四边简支边界条件,采用双傅里叶级数求解方程,并与文献及数值结果进行对比,验证了本文方法的有效性。进一步研究了加筋位置和数量、面板厚度及芯层厚度变化对夹芯复合材料加筋板自由振动的影响,为工程实际的结构优化设计提供参考。
Free vibration control equation of the sandwich composite stiffened plate in vacuum is derived which is based on the first-order shear deformation theory (FSDT) and the Hamilton principle and Dirac function is used to describe the stiffener. The submerged sandwich composite stiffened plate is regarded as a thin plate underwater, and according to the continuous condition of normal acceleration on the fluid-solid coupling surface, the lateral free vibration equation is reconstructed to obtain the governing equation of the overall structure in water. The double Fourier series is used to solve the free vibration of the simply supported sandwich composite stiffened plate, and comparing the results with the numerical simulation results. The conclusions verify the effectiveness of the solution method. The influence of stiffening position, quantity and thickness changes of plate and core layer on the free vibration of the sandwich composite stiffened plate is further studied, which provides a reference for the optimal design of the actual project.
2022,44(11): 12-21 收稿日期:2021-11-18
DOI:10.3404/j.issn.1672-7649.2022.11.003
分类号:TB332
基金项目:国家自然科学基金资助项目(51779098)
作者简介:耿佳傲(1996-),男,硕士研究生,研究方向为船舶振动与噪声
参考文献:
[1] 朱锡, 石勇, 梅志远. 夹芯复合材料在潜艇声隐身结构中的应用及其相关技术研究[J]. 中国舰船研究, 2007(3): 34–39
ZHU X, SHI Y, MEI Z Z. Application of sandwich composite material in submarine acoustic stealth structure and related technology research[J]. Chinese Journal of Ship Research, 2007(3): 34–39
[2] 肖锋, 谌勇, 章振华, 等. 夹层结构冲击动力学研究综述[J]. 振动与冲击, 2013, 32(18): 1–7+20
XIAO F, SHEN Y, ZHANG Z H, et al. Summary of research on impact dynamics of sandwich structure[J]. Jouranl of Vibration and Shock, 2013, 32(18): 1–7+20
[3] KIRCHHOFF GR. Uber das gleichgewicht und die bewegung einer elastischen Scheibe[J]. Jouranl of Reine Angew Math (Crelle′s J), 1850, 40: 51–88
[4] MINDLIN R D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[J]. Jouranl of Applied Mechanics, 1951, 18: 31–38
[5] REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12(2): 69–77
[6] WHITNEY J M, PAGANO N J. Shear deformation in heterogeneous anisotropic plates[J]. Journal of Applied Mechanics, 1970, 37(4): 1031–1036
[7] REDDY JN. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51: 745–752
[8] KARAMA M, AFAQ KS, MISTOU S. Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity[J]. International Journal of Solids and Structures, 2003, 40: 1525–1546
[9] AYDOGDU M. A new shear deformation theory for laminated composite plates[J]. Composite Structures, 2009, 89: 94–101
[10] 刘炳昌, 翟彦春. 复合材料夹芯板材料参数对自由振动的影响[J]. 塑料科技, 2020, 48(6): 39–43
LIU B C, ZHAI Y C. Effect of material parameters of composite sandwich panel on free vibration[J]. Plastics Science and Technology, 2020, 48(6): 39–43
[11] DI SCIUVA M. Bending vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model[J]. Jouranl of Sound Vibration, 1986, 105: 425–442
[12] 李飘. Z向增强复合材料夹芯板的力学与声学特性研究[D]. 武汉: 华中科技大学, 2013.
LI P. Research on mechanical and acoustic properties of z-reinforced composite sandwich Panels[D]. WuHan: Huazhong University of Science and Technology, 2013.
[13] XU H, DU J, LI W L. Vibrations of rectangular plates reinforced by any number of beams of arbitrary lengths and placement angles[J]. Jouranl of Sound Vibration, 2010, 329(18): 3759–3779
[14] Shao-qing WANG, Jian-min SU, Li LUO, et al. Free vibration of embedded co-cured damping composite cruciform stiffened plates[J]. Machine Tool & Hydraulics, 2019, 47(24): 47–51
[15] K. BHASKAR, Anup Pydah An elasticity approach for simply-supported isotropic and orthotropic stiffened plates[J]. International Journal of Mechanical Sciences, 2014: 89
[16] 杨智雄. 夹芯复合材料结构振声特性分析及优化设计[D]. 武汉: 华中科技大学, 2019.
YANG Z X. Vibro-Acoustic analysis and optimum design of composite structures with viscoelastic core. [D]. WuHan: Huazhong University of Science and Technology, 2019.
[17] 路庆贺, 梁森, 周运发, 等. 阻尼夹芯复合材料加筋板的振动分析与数值模拟[J]. 振动与冲击, 2020, 39(05): 250–261
LU Q H, LIANG S, ZHOU Y F, et al. Vibration characteristics analysis and numerical simulation for stiffened plates with damping core composite[J]. Jouranl of Vibration and Shock, 2020, 39(05): 250–261
[18] 王震鸣, 刘国玺, 吕明身. 各向异性多层扁壳的大挠度方程[J]. 应用数学和力学, 1982, 3(1): 49–65
WANG Z M, LIU G X, LU M S. The finite deflection equations of anisotropic laminated shallow shells[J]. Applied Mathmatics Mechanics–English, 1982, 3(1): 49–65
[19] LAULAGNET B. Sound radiation by a simply supported unbaffled plate[J]. Journal of Acoust Society of America, 1998, 103(5): 2451–2462